Previous |  Up |  Next

Article

Title: The area formula for $W^{1,n}$-mappings (English)
Author: Malý, Jan
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 35
Issue: 2
Year: 1994
Pages: 291-298
.
Category: math
.
Summary: Let $f$ be a mapping in the Sobolev space $W^{1,n}(\Omega,\bold R^n)$. Then the change of variables, or area formula holds for $f$ provided removing from counting into the multiplicity function the set where $f$ is not approximately Hölder continuous. This exceptional set has Hausdorff dimension zero. (English)
Keyword: Sobolev spaces
Keyword: change of variables
Keyword: area formula
Keyword: Hölder continuity
MSC: 26B15
MSC: 26B20
MSC: 28A75
MSC: 30C65
MSC: 46E35
idZBL: Zbl 0812.30006
idMR: MR1286576
.
Date available: 2009-01-08T18:11:05Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118668
.
Reference: [{1}] Bojarski B., Iwaniec T.: Analytical foundations of the theory of quasiconformal mapping in $\bold R^n$.Ann. Acad. Sci. Fenn. Ser. A I. Math. 8 (1983), 257-324. MR 0731786
Reference: [{2}] Federer H.: Geometric Measure Theory.Springer-Verlag, Grundlehren, 1969. Zbl 0874.49001, MR 0257325
Reference: [{3}] Federer H.: Surface area II.Trans. Amer. Math. Soc. 55 (1944), 438-456. MR 0010611
Reference: [{4}] Feyel D., de la Pradelle A.: Hausdorff measures on the Wiener space.Potential Analysis 1,2 (1992), 177-189. Zbl 1081.28500, MR 1245885
Reference: [{5}] Giaquinta M., Modica G., Souček J.: Area and the area formula.preprint, 1993. MR 1293774
Reference: [{6}] Hedberg L.I., Wolff Th.H.: Thin sets in nonlinear potential theory.Ann. Inst. Fourier, Grenoble 33,4 (1983), 161-187. Zbl 0508.31008, MR 0727526
Reference: [{7}] Heinonen J., Kilpeläinen T., Martio O.: Nonlinear Potential Theory of Degenerate Elliptic Equations.Oxford Mathematical Monographs, Clarendon Press, 1993. MR 1207810
Reference: [{8}] Malý J.: Hölder type quasicontinuity.Potential Analysis 2 (1993), 249-254. MR 1245242
Reference: [{9}] Malý J., Martio O.: Lusin's condition (N) and mappings of the class $W^{1,n}$.Preprint 153, University of Jyväskylä, 1992.
Reference: [{10}] Martio O., Ziemer W.P.: Lusin's condition (N) and mappings with non-negative Jacobians.Michigan Math. J., to appear. MR 1182504
Reference: [{11}] Meyers N.G.: Continuity properties of potentials.Duke Math. J. 42 (1975), 157-166. Zbl 0334.31004, MR 0367235
Reference: [{12}] Reshetnyak Yu.G.: On the concept of capacity in the theory of functions with generalized derivatives.Sibirsk. Mat. Zh. 10 (1969), 1109-1138. MR 0276487
Reference: [{13}] Reshetnyak Yu.G.: Space Mappings with Bounded Distortion.Transl. Math. Monographs, Amer. Math. Soc., Providence, 1989. Zbl 0667.30018, MR 0994644
Reference: [{14}] Ziemer W.P.: Weakly Differentiable Functions.Graduate Texts in Mathematics 120, Springer-Verlag, 1989. Zbl 0692.46022, MR 1014685
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_35-1994-2_10.pdf 208.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo