Previous |  Up |  Next

Article

Keywords:
Jordan *-derivation
Summary:
In this note, by means of the spectrum of the generating operator, we characterize the self-adjointness and closedness of the range of a normal and a self-adjoint Jordan *-derivation, respectively.
References:
[1] Anderson J.H., Foias C.: Properties which normal operators share with normal derivations and related operators. Pacific J. Math. 61 (1975), 313-325. MR 0412889 | Zbl 0324.47018
[2] Anderson J.H., Bunce J.W., Deddens J.A., Williams J.P.: C*-algebras and derivation ranges. Acta Sci. Math. 40 (1978), 211-227. MR 0515202 | Zbl 0406.46048
[3] Johnson B.E., Williams J.P.: The range of a normal derivation. Pacific J. Math. 58 (1975), 105-122. MR 0380490 | Zbl 0275.47010
[4] Molnár L.: The range of Jordan *-derivation. submitted.
[5] Šemrl P.: Quadratic functionals and Jordan *-derivations. Studia Math. 97 (1991), 157-165. MR 1100685
[6] Šemrl P.: Quadratic and quasi-quadratic functionals. Proc. Amer. Math. Soc., to appear. MR 1158008
[7] Šemrl P.: Jordan *-derivations of standard operator algebras. Proc. Amer. Math. Soc. 120 (1994), 515-519. MR 1186136
[8] Stampfli J.G.: On the range of a hyponormal derivation. Proc. Amer. Math. Soc. 52 (1975), 117-120. MR 0377575 | Zbl 0315.47019
[9] Stampfli J.G.: On self-adjoint derivation ranges. Pacific J. Math. 82 (1979), 257-277. MR 0549849 | Zbl 0427.47025
Partner of
EuDML logo