Article
Keywords:
sigma-porous; sigma-bilaterally-porous; right porous
Summary:
A closed subset of the real line which is right porous but is not $\sigma$-left-porous is constructed.
References:
[F] Foran J.:
Continuous functions need not have $ \sigma $-porous graphs. Real Anal. Exchange 11 (1985-86), 194-203.
MR 0828490 |
Zbl 0607.26005
[Za 1] Zajíček L.:
On $ \sigma $-porous sets and Borel sets. Topology Appl. 33 (1989), 99-103.
MR 1020986
[Za 2] Zajíček L.:
Sets of $ \sigma $-porosity and sets of $ \sigma $-porosity $(q)$. Časopis Pěst. Mat. 101 (1976), 350-359.
MR 0457731 |
Zbl 0341.30026
[Za 3] Zajíček L.:
Porosity and $ \sigma $-porosity. Real Anal. Exchange 13 (1987-88), 314-350.
MR 0943561
[E-H-S] Evans M.J., Humke P.D., Saxe K.:
A symmetric porosity conjecture of L. Zajíček. Real Anal. Exchange 17 (1991-92), 258-271.
MR 1147367