Title:
|
On the range of a normal Jordan $^*$-derivation (English) |
Author:
|
Molnár, Lajos |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
35 |
Issue:
|
4 |
Year:
|
1994 |
Pages:
|
691-695 |
. |
Category:
|
math |
. |
Summary:
|
In this note, by means of the spectrum of the generating operator, we characterize the self-adjointness and closedness of the range of a normal and a self-adjoint Jordan *-derivation, respectively. (English) |
Keyword:
|
Jordan *-derivation |
MSC:
|
46L70 |
MSC:
|
47B15 |
MSC:
|
47B47 |
MSC:
|
47D25 |
MSC:
|
47L30 |
idZBL:
|
Zbl 0821.47028 |
idMR:
|
MR1321239 |
. |
Date available:
|
2009-01-08T18:14:23Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118710 |
. |
Reference:
|
[1] Anderson J.H., Foias C.: Properties which normal operators share with normal derivations and related operators.Pacific J. Math. 61 (1975), 313-325. Zbl 0324.47018, MR 0412889 |
Reference:
|
[2] Anderson J.H., Bunce J.W., Deddens J.A., Williams J.P.: C*-algebras and derivation ranges.Acta Sci. Math. 40 (1978), 211-227. Zbl 0406.46048, MR 0515202 |
Reference:
|
[3] Johnson B.E., Williams J.P.: The range of a normal derivation.Pacific J. Math. 58 (1975), 105-122. Zbl 0275.47010, MR 0380490 |
Reference:
|
[4] Molnár L.: The range of Jordan *-derivation.submitted. |
Reference:
|
[5] Šemrl P.: Quadratic functionals and Jordan *-derivations.Studia Math. 97 (1991), 157-165. MR 1100685 |
Reference:
|
[6] Šemrl P.: Quadratic and quasi-quadratic functionals.Proc. Amer. Math. Soc., to appear. MR 1158008 |
Reference:
|
[7] Šemrl P.: Jordan *-derivations of standard operator algebras.Proc. Amer. Math. Soc. 120 (1994), 515-519. MR 1186136 |
Reference:
|
[8] Stampfli J.G.: On the range of a hyponormal derivation.Proc. Amer. Math. Soc. 52 (1975), 117-120. Zbl 0315.47019, MR 0377575 |
Reference:
|
[9] Stampfli J.G.: On self-adjoint derivation ranges.Pacific J. Math. 82 (1979), 257-277. Zbl 0427.47025, MR 0549849 |
. |