Title:
|
A $\sigma$-porous set need not be $\sigma$-bilaterally porous (English) |
Author:
|
Nájares, J. |
Author:
|
Zajíček, L. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
35 |
Issue:
|
4 |
Year:
|
1994 |
Pages:
|
697-703 |
. |
Category:
|
math |
. |
Summary:
|
A closed subset of the real line which is right porous but is not $\sigma$-left-porous is constructed. (English) |
Keyword:
|
sigma-porous |
Keyword:
|
sigma-bilaterally-porous |
Keyword:
|
right porous |
MSC:
|
26A03 |
MSC:
|
26A21 |
MSC:
|
26A99 |
MSC:
|
28A05 |
MSC:
|
28A55 |
MSC:
|
54H05 |
idZBL:
|
Zbl 0822.26001 |
idMR:
|
MR1321240 |
. |
Date available:
|
2009-01-08T18:14:29Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118711 |
. |
Reference:
|
[F] Foran J.: Continuous functions need not have $ \sigma $-porous graphs.Real Anal. Exchange 11 (1985-86), 194-203. Zbl 0607.26005, MR 0828490 |
Reference:
|
[Za 1] Zajíček L.: On $ \sigma $-porous sets and Borel sets.Topology Appl. 33 (1989), 99-103. MR 1020986 |
Reference:
|
[Za 2] Zajíček L.: Sets of $ \sigma $-porosity and sets of $ \sigma $-porosity $(q)$.Časopis Pěst. Mat. 101 (1976), 350-359. Zbl 0341.30026, MR 0457731 |
Reference:
|
[Za 3] Zajíček L.: Porosity and $ \sigma $-porosity.Real Anal. Exchange 13 (1987-88), 314-350. MR 0943561 |
Reference:
|
[E-H-S] Evans M.J., Humke P.D., Saxe K.: A symmetric porosity conjecture of L. Zajíček.Real Anal. Exchange 17 (1991-92), 258-271. MR 1147367 |
. |