Previous |  Up |  Next

Article

Keywords:
Jordan *-derivation
Summary:
In this paper, we examine some questions concerned with certain ``skew'' properties of the range of a Jordan *-derivation. In the first part we deal with the question, for example, when the range of a Jordan *-derivation is a complex subspace. The second part of this note treats a problem in relation to the range of a generalized Jordan *-derivation.
References:
[1] Apostol C., Stampfli J.G.: On derivation ranges. Indiana Univ. Math. J. 25 (1976), 857-869. MR 0412890 | Zbl 0355.47025
[2] Brešar M., Zalar B.: On the structure of Jordan *-derivations. Colloquium Math. 63 (1992), 163-171. MR 1180629
[3] Fialkow L.A., Loebl R.: Elementary mappings into ideals of operators. Ill. J. Math. 28 (1984), 555-578. MR 0761990 | Zbl 0529.47033
[4] Fillmore P.A., Stampfli J.G., Williams J.P.: On the essential numerical range, the essential spectrum, and a problem of Halmos. Acta Sci. Math. 33 (1972), 179-192. MR 0322534 | Zbl 0246.47006
[5] Johnson B.E., Williams J.P.: The range of a normal derivation. Pacific J. Math. 58 (1975), 105-122. MR 0380490 | Zbl 0275.47010
[6] Molnár L.: The range of a Jordan *-derivation. preprint. MR 1416276
[7] Molnár L.: On the range of a normal Jordan *-derivation. Comment. Math. Univ. Carolinae 35 (1994), 691-695. MR 1321239
[8] Molnár L.: Jordan *-derivation pairs on a complex *-algebra. preprint. MR 1466293
[9] Molnár L.: A condition for a subspace of $\Cal B(H)$ to be an ideal. Linear Algebra and Appl., to appear. MR 1374262 | Zbl 0852.46021
[10] Molnár L.: The range of a Jordan *-derivation on an $H^*$-algebra. preprint. MR 1406395
[11] Radjavi H., Rosenthal P.: Matrices for operators and generators of $\Cal B(H)$. J. London Math. Soc. 2 (1970), 557-560. MR 0265978
[12] Šemrl P.: On Jordan *-derivations and an application. Colloquium Math. 59 (1990), 241-251. MR 1090656
[13] Šemrl P.: Quadratic functionals and Jordan *-derivations. Studia Math. 97 (1991), 157-165. MR 1100685
[14] Šemrl P.: Quadratic and quasi-quadratic functionals. Proc. Amer. Math. Soc. 119 (1993), 1105-1113. MR 1158008
[15] Šemrl P.: Jordan *-derivations of standard operator algebras. Proc. Amer. Math. Soc. 120 (1994), 515-518. MR 1186136
[16] Stampfli J.G.: Derivations on $\Cal B(\Cal H)$: The range. Ill. J. Math. 17 (1973), 518-524. MR 0318914
[17] Stampfli J.G.: On the range of a hyponormal derivation. Proc. Amer. Math. Soc. 52 (1975), 117-120. MR 0377575 | Zbl 0315.47019
[18] Williams J.P.: Derivations ranges: open questions. Topics in Modern Operator Theory (Timisoara/ Herculane, 1980), Birkhäuser, Basel-Boston, Mass., 1981, pp. 319-328. MR 0672832
[19] Zalar B.: Jordan *-derivation pairs and quadratic functionals on modules over *-rings. preprint. MR 1466292
Partner of
EuDML logo