Previous |  Up |  Next

Article

Title: On the range of a Jordan *-derivation (English)
Author: Battyányi, Péter
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 37
Issue: 4
Year: 1996
Pages: 659-665
.
Category: math
.
Summary: In this paper, we examine some questions concerned with certain ``skew'' properties of the range of a Jordan *-derivation. In the first part we deal with the question, for example, when the range of a Jordan *-derivation is a complex subspace. The second part of this note treats a problem in relation to the range of a generalized Jordan *-derivation. (English)
Keyword: Jordan *-derivation
MSC: 46K05
MSC: 47B47
MSC: 47D50
MSC: 47L30
idZBL: Zbl 0886.47017
idMR: MR1440699
.
Date available: 2009-01-08T18:27:12Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118876
.
Reference: [1] Apostol C., Stampfli J.G.: On derivation ranges.Indiana Univ. Math. J. 25 (1976), 857-869. Zbl 0355.47025, MR 0412890
Reference: [2] Brešar M., Zalar B.: On the structure of Jordan *-derivations.Colloquium Math. 63 (1992), 163-171. MR 1180629
Reference: [3] Fialkow L.A., Loebl R.: Elementary mappings into ideals of operators.Ill. J. Math. 28 (1984), 555-578. Zbl 0529.47033, MR 0761990
Reference: [4] Fillmore P.A., Stampfli J.G., Williams J.P.: On the essential numerical range, the essential spectrum, and a problem of Halmos.Acta Sci. Math. 33 (1972), 179-192. Zbl 0246.47006, MR 0322534
Reference: [5] Johnson B.E., Williams J.P.: The range of a normal derivation.Pacific J. Math. 58 (1975), 105-122. Zbl 0275.47010, MR 0380490
Reference: [6] Molnár L.: The range of a Jordan *-derivation.preprint. MR 1416276
Reference: [7] Molnár L.: On the range of a normal Jordan *-derivation.Comment. Math. Univ. Carolinae 35 (1994), 691-695. MR 1321239
Reference: [8] Molnár L.: Jordan *-derivation pairs on a complex *-algebra.preprint. MR 1466293
Reference: [9] Molnár L.: A condition for a subspace of $\Cal B(H)$ to be an ideal.Linear Algebra and Appl., to appear. Zbl 0852.46021, MR 1374262
Reference: [10] Molnár L.: The range of a Jordan *-derivation on an $H^*$-algebra.preprint. MR 1406395
Reference: [11] Radjavi H., Rosenthal P.: Matrices for operators and generators of $\Cal B(H)$.J. London Math. Soc. 2 (1970), 557-560. MR 0265978
Reference: [12] Šemrl P.: On Jordan *-derivations and an application.Colloquium Math. 59 (1990), 241-251. MR 1090656
Reference: [13] Šemrl P.: Quadratic functionals and Jordan *-derivations.Studia Math. 97 (1991), 157-165. MR 1100685
Reference: [14] Šemrl P.: Quadratic and quasi-quadratic functionals.Proc. Amer. Math. Soc. 119 (1993), 1105-1113. MR 1158008
Reference: [15] Šemrl P.: Jordan *-derivations of standard operator algebras.Proc. Amer. Math. Soc. 120 (1994), 515-518. MR 1186136
Reference: [16] Stampfli J.G.: Derivations on $\Cal B(\Cal H)$: The range.Ill. J. Math. 17 (1973), 518-524. MR 0318914
Reference: [17] Stampfli J.G.: On the range of a hyponormal derivation.Proc. Amer. Math. Soc. 52 (1975), 117-120. Zbl 0315.47019, MR 0377575
Reference: [18] Williams J.P.: Derivations ranges: open questions.Topics in Modern Operator Theory (Timisoara/ Herculane, 1980), Birkhäuser, Basel-Boston, Mass., 1981, pp. 319-328. MR 0672832
Reference: [19] Zalar B.: Jordan *-derivation pairs and quadratic functionals on modules over *-rings.preprint. MR 1466292
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_37-1996-4_1.pdf 190.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo