Title:
|
On the range of a Jordan *-derivation (English) |
Author:
|
Battyányi, Péter |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
37 |
Issue:
|
4 |
Year:
|
1996 |
Pages:
|
659-665 |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we examine some questions concerned with certain ``skew'' properties of the range of a Jordan *-derivation. In the first part we deal with the question, for example, when the range of a Jordan *-derivation is a complex subspace. The second part of this note treats a problem in relation to the range of a generalized Jordan *-derivation. (English) |
Keyword:
|
Jordan *-derivation |
MSC:
|
46K05 |
MSC:
|
47B47 |
MSC:
|
47D50 |
MSC:
|
47L30 |
idZBL:
|
Zbl 0886.47017 |
idMR:
|
MR1440699 |
. |
Date available:
|
2009-01-08T18:27:12Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118876 |
. |
Reference:
|
[1] Apostol C., Stampfli J.G.: On derivation ranges.Indiana Univ. Math. J. 25 (1976), 857-869. Zbl 0355.47025, MR 0412890 |
Reference:
|
[2] Brešar M., Zalar B.: On the structure of Jordan *-derivations.Colloquium Math. 63 (1992), 163-171. MR 1180629 |
Reference:
|
[3] Fialkow L.A., Loebl R.: Elementary mappings into ideals of operators.Ill. J. Math. 28 (1984), 555-578. Zbl 0529.47033, MR 0761990 |
Reference:
|
[4] Fillmore P.A., Stampfli J.G., Williams J.P.: On the essential numerical range, the essential spectrum, and a problem of Halmos.Acta Sci. Math. 33 (1972), 179-192. Zbl 0246.47006, MR 0322534 |
Reference:
|
[5] Johnson B.E., Williams J.P.: The range of a normal derivation.Pacific J. Math. 58 (1975), 105-122. Zbl 0275.47010, MR 0380490 |
Reference:
|
[6] Molnár L.: The range of a Jordan *-derivation.preprint. MR 1416276 |
Reference:
|
[7] Molnár L.: On the range of a normal Jordan *-derivation.Comment. Math. Univ. Carolinae 35 (1994), 691-695. MR 1321239 |
Reference:
|
[8] Molnár L.: Jordan *-derivation pairs on a complex *-algebra.preprint. MR 1466293 |
Reference:
|
[9] Molnár L.: A condition for a subspace of $\Cal B(H)$ to be an ideal.Linear Algebra and Appl., to appear. Zbl 0852.46021, MR 1374262 |
Reference:
|
[10] Molnár L.: The range of a Jordan *-derivation on an $H^*$-algebra.preprint. MR 1406395 |
Reference:
|
[11] Radjavi H., Rosenthal P.: Matrices for operators and generators of $\Cal B(H)$.J. London Math. Soc. 2 (1970), 557-560. MR 0265978 |
Reference:
|
[12] Šemrl P.: On Jordan *-derivations and an application.Colloquium Math. 59 (1990), 241-251. MR 1090656 |
Reference:
|
[13] Šemrl P.: Quadratic functionals and Jordan *-derivations.Studia Math. 97 (1991), 157-165. MR 1100685 |
Reference:
|
[14] Šemrl P.: Quadratic and quasi-quadratic functionals.Proc. Amer. Math. Soc. 119 (1993), 1105-1113. MR 1158008 |
Reference:
|
[15] Šemrl P.: Jordan *-derivations of standard operator algebras.Proc. Amer. Math. Soc. 120 (1994), 515-518. MR 1186136 |
Reference:
|
[16] Stampfli J.G.: Derivations on $\Cal B(\Cal H)$: The range.Ill. J. Math. 17 (1973), 518-524. MR 0318914 |
Reference:
|
[17] Stampfli J.G.: On the range of a hyponormal derivation.Proc. Amer. Math. Soc. 52 (1975), 117-120. Zbl 0315.47019, MR 0377575 |
Reference:
|
[18] Williams J.P.: Derivations ranges: open questions.Topics in Modern Operator Theory (Timisoara/ Herculane, 1980), Birkhäuser, Basel-Boston, Mass., 1981, pp. 319-328. MR 0672832 |
Reference:
|
[19] Zalar B.: Jordan *-derivation pairs and quadratic functionals on modules over *-rings.preprint. MR 1466292 |
. |