Previous |  Up |  Next

Article

Title: Continuity of the uniform rotundity modulus relative to linear subspaces (English)
Author: Fernández, Manuel
Author: Palacios, Isidro
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 2
Year: 1997
Pages: 273-277
.
Category: math
.
Summary: We prove the continuity of the rotundity modulus relative to linear subspaces of normed spaces. As a consequence we reduce the study of uniform rotundity relative to linear subspaces to the study of the same property relative to closed linear subspaces of Banach spaces. (English)
Keyword: uniform rotundity
MSC: 46B20
idZBL: Zbl 0886.46013
idMR: MR1455494
.
Date available: 2009-01-08T18:30:47Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118925
.
Reference: [1] Clarkson J.A.: Uniformly convex spaces.Trans. Amer. Math. Soc. 40 (1936), 396-414. Zbl 0015.35604, MR 1501880
Reference: [2] Fakhoury H.: Directions d'uniform convexité dans un space normé.Séminaire Choquet, 14 anné, No. 6 (1974).
Reference: [3] Fernández M., Palacios I.: Relative rotundity in $L^p(X)$.Arch. Math. (Basel) 65 (1995), 61-68. MR 1336225
Reference: [4] Fernández M., Palacios I.: Directional uniform rotundity in spaces of essentially bounded vector functions.to appear in Proc. Amer. Math. Soc. MR 1350942
Reference: [5] Garkavi A.L.: The best possible net and the best possible cross-section of a set in a normed space.Izv. Akad. Nauk SSSR Ser. Mat. 26 (1962), 87-106 Amer. Math. Soc. Transl. Ser. 2 39 (1964), 111-132. MR 0136969
Reference: [6] Goebel K., Kirk W.A.: Topics in Metric Fixed Point Theory.Cambridge Studies in Advanced Mathematics No. 28, Cambridge Univ. Press, Cambridge, MA, 1990. MR 1074005
Reference: [7] Kamińska A., Turett B.: Some remarks on moduli of rotundity in Banach spaces.Acad. Scien. Math. Vol. 36, No. 5-6, 1988. MR 1101665
Reference: [8] Lindenstrauss J., Tzafriri L.: Classical Banach Space II.Springer-Verlag, Berlin-Heidelberg-New York, 1979. MR 0540367
Reference: [9] Ullán A.: Módulos de Convexidad y Lisura en Espacios Normados.Publ. Dep. Matemáticas Univ. Extremadura, No. 27, Badajoz, 1991. MR 1174971
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-2_8.pdf 178.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo