Title:
|
Sets of determination for solutions of the Helmholtz equation (English) |
Author:
|
Ranošová, Jarmila |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
38 |
Issue:
|
2 |
Year:
|
1997 |
Pages:
|
309-328 |
. |
Category:
|
math |
. |
Summary:
|
Let $\alpha > 0$, $\lambda = (2\alpha)^{-1/2}$, $S^{n-1}$ be the $(n-1)$-dimensional unit sphere, $\sigma$ be the surface measure on $S^{n-1}$ and $h(x) = \int_{S^{n-1}} e^{\lambda\langle x,y\rangle }\,d\sigma(y)$. We characterize all subsets $M$ of $\Bbb R^n $ such that $$ \inf\limits_{x\in \Bbb R^n}{u(x)\over h(x)} = \inf\limits_{x\in M}{u(x)\over h(x)} $$ for every positive solution $u$ of the Helmholtz equation on $\Bbb R^n$. A closely related problem of representing functions of $L_1(S^{n-1})$ as sums of blocks of the form $ e^{\lambda\langle x_k,.\rangle }/h(x_k)$ corresponding to points of $M$ is also considered. The results provide a counterpart to results for classical harmonic functions in a ball, and for parabolic functions on a slab, see References. (English) |
Keyword:
|
Helmholtz equation |
Keyword:
|
set of determination |
Keyword:
|
decomposition of $L^1$ |
MSC:
|
31B10 |
MSC:
|
35J05 |
idZBL:
|
Zbl 0887.35035 |
idMR:
|
MR1455498 |
. |
Date available:
|
2009-01-08T18:31:06Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118929 |
. |
Reference:
|
[1] Aikawa H.: Sets of determination for harmonic functions in an NTA domains.J. Math. Soc. Japan, to appear. MR 1376083 |
Reference:
|
[2] Bauer H.: Harmonische Räume und ihre Potentialtheorie.Springer-Verlag Berlin-Heidelberg-New York (1966). Zbl 0142.38402, MR 0210916 |
Reference:
|
[3] Bonsall F.F.: Decomposition of functions as sums of elementary functions.Quart J. Math. Oxford (2) 37 (1986), 129-136. MR 0841422 |
Reference:
|
[4] Bonsall F.F.: Domination of the supremum of a bounded harmonic function by its supremum over a countable subset.Proc. Edinburgh Math. Soc. 30 (1987), 441-477. Zbl 0658.31001, MR 0908454 |
Reference:
|
[5] Bonsall F.F.: Some dual aspects of the Poisson kernel.Proc. Edinburgh Math. Soc. 33 (1990), 207-232. Zbl 0704.31001, MR 1057750 |
Reference:
|
[6] Caffarelli L.A., Littman W.: Representation formulas for solutions to $\Delta u - u = 0$ in $\Bbb R^n$.Studies in Partial Differential Equations, Ed. W. Littman, MAA Studies in Mathematics 23, MAA (1982). MR 0716508 |
Reference:
|
[7] Gardiner S.J.: Sets of determination for harmonic function.Trans. Amer. Math. Soc. 338 (1993), 233-243. MR 1100694 |
Reference:
|
[8] Korányi A.: A survey of harmonic functions on symmetric spaces.Proc. Symposia Pure Math. XXV, part 1 (1979), 323 -344. MR 0545272 |
Reference:
|
[9] Korányi A., Taylor J.C.: Fine convergence and parabolic convergence for the Helmholtz equation and the heat equation.Illinois J. Math. 27.1 (1983), 77-93. MR 0684542 |
Reference:
|
[10] Ranošová J.: Sets of determination for parabolic functions on a half-space.Comment. Math. Univ. Carolinae 35 (1994), 497-513. MR 1307276 |
Reference:
|
[11] Ranošová J.: Characterization of sets of determination for parabolic functions on a slab by coparabolic (minimal) thinness.Comment. Math. Univ. Carolinae 37 (1996), 707-723. Zbl 0887.35064, MR 1440703 |
Reference:
|
[12] Rudin W.: Functional analysis.McGraw-Hill Book Company (1973). Zbl 0253.46001, MR 0365062 |
Reference:
|
[13] Taylor J.C.: An elementary proof of the theorem of Fatou-Naïm-Doob.1980 Seminar on Harmonic Analysis (Montreal, Que., 1980), CMS Conf. Proc., vol.1, Amer. Math. Soc., Providence, R.I (1981), 153-163. Zbl 0551.31004, MR 0670103 |
Reference:
|
[14] Watson G.N.: Theory of Bessel functions.2nd ed., Cambridge Univ. Press Cambridge (1944). Zbl 0063.08184, MR 0010746 |
. |