Previous |  Up |  Next

Article

Title: On differentiability properties of Lipschitz functions on a Banach space with a Lipschitz uniformly Gâteaux differentiable bump function (English)
Author: Zajíček, Luděk
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 2
Year: 1997
Pages: 329-336
.
Category: math
.
Summary: We improve a theorem of P.G. Georgiev and N.P. Zlateva on G\^ateaux differentiability of Lipschitz functions in a Banach space which admits a Lipschitz uniformly G\^ateaux differentiable bump function. In particular, our result implies the following theorem: If $d$ is a distance function determined by a closed subset $A$ of a Banach space $X$ with a uniformly G\^ateaux differentiable norm, then the set of points of $X\setminus A$ at which $d$ is not G\^ateaux differentiable is not only a first category set, but it is even $\sigma$-porous in a rather strong sense. (English)
Keyword: Lipschitz function
Keyword: G\^ateaux differentiability
Keyword: uniformly G\^ateaux differentiable
Keyword: bump function
Keyword: Banach-Mazur game
Keyword: $\sigma$-porous set
MSC: 41A65
MSC: 46B20
MSC: 46G05
idZBL: Zbl 0886.46049
idMR: MR1455499
.
Date available: 2009-01-08T18:31:11Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118930
.
Reference: [1] Deville R., Godefroy G., Zizler V.: Smoothness and Renorming in Banach Spaces.Pitman Monographs 64, Longman Essex (1993). MR 1211634
Reference: [2] Fabian M., Zhivkov N.V.: A characterization of Asplund spaces with the help of local $\epsilon$-supports of Ekeland and Lebourg.C.R. Acad. Sci. Bulg. 38 (1985), 671-674. Zbl 0577.46012, MR 0805439
Reference: [3] Georgiev P.G.: Submonotone mappings in Banach spaces and differentiability of non-convex functions.C.R. Acad. Sci. Bulg. 42 (1989), 13-16. Zbl 0715.49016, MR 1020610
Reference: [4] Georgiev P.G.: The smooth variational principle and generic differentiability.Bull. Austral. Math. Soc. 43 (1991), 169-175. Zbl 0717.49014, MR 1086731
Reference: [5] Georgiev P.G.: Submonotone mappings in Banach spaces and applications.preprint. Zbl 0898.46015, MR 1451845
Reference: [6] Georgiev P.G., Zlateva N.P.: An application of the smooth variational principle to generic Gâteaux differentiability.preprint.
Reference: [7] Zajíček L.: Differentiability of the distance function and points of multi-valuedness of the metric projection in Banach space.Czechoslovak Math. J. 33(108) (1983), 292-308. MR 0699027
Reference: [8] Zajíček L.: A generalization of an Ekeland-Lebourg theorem and the differentiability of distance functions.Suppl. Rend. Circ. Mat. di Palermo, Ser. II 3 (1984), 403-410. MR 0744405
Reference: [9] Zajíček L.: A note on $\sigma$-porous sets.Real Analysis Exchange 17 (1991-92), p.18.
Reference: [10] Zajíček L.: Products of non-$\sigma$-porous sets and Foran systems.submitted to Atti Sem. Mat. Fis. Univ. Modena. MR 1428780
Reference: [11] Zelený M.: The Banach-Mazur game and $\sigma$-porosity.Fund. Math. 150 (1996), 197-210. MR 1405042
Reference: [12] Zhivkov N.V.: Generic Gâteaux differentiability of directionally differentiable mappings.Rev. Roumaine Math. Pures Appl. 32 (1987), 179-188. Zbl 0628.46044, MR 0889011
Reference: [13] Wee-Kee Tang: Uniformly differentiable bump functions.preprint. MR 1421846
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-2_13.pdf 202.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo