Previous |  Up |  Next

Article

Title: Sets of extended uniqueness and $\sigma$-porosity (English)
Author: Zelený, Miroslav
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 2
Year: 1997
Pages: 337-341
.
Category: math
.
Summary: We show that there exists a closed non-$\sigma$-porous set of extended uniqueness. We also give a new proof of Lyons' theorem, which shows that the class of $H^{(n)}$-sets is not large in $U_0$. (English)
Keyword: $\sigma $-porosity
Keyword: sets of extended uniqueness
Keyword: trigonometric series
Keyword: $H^{(n)}$-sets
MSC: 28A05
MSC: 42A63
MSC: 43A46
idZBL: Zbl 0894.28001
idMR: MR1455500
.
Date available: 2009-01-08T18:31:15Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118931
.
Reference: [BKR] Bukovský L., Kholshchevnikova N.N., Repický M.: Thin sets of harmonic analysis and infinite combinatorics.Real Analysis Exchange 20.2 (1994-95), 454-509. MR 1348075
Reference: [DSR] Debs G., Saint-Raymond J.: Ensembles boréliens d'unicité et d'unicité au sens large.Ann. Inst. Fourier (Grenoble) 37 (1987), 217-239. MR 0916281
Reference: [D] Dolzhenko E.P.: Boundary properties of arbitrary functions (in Russian).Izv. Akad. Nauk. SSSR Ser. Mat. 31 (1967), 3-14. MR 0217297
Reference: [KL] Kechris A., Louveau A.: Descriptive Set Theory and the Structure of Sets of Uniqueness.Cambridge U. Press, Cambridge (1987). Zbl 0642.42014, MR 0953784
Reference: [L] Lyons R.: The size of some classes of thin sets.Studia Math. 86.1 (1987), 59-78. Zbl 0628.43006, MR 0887312
Reference: [T] Tkadlec J.: Construction of a finite Borel measure with $\sigma$-porous sets as null sets.Real Analysis Exchange 12 (1986-87), 349-353. Zbl 0649.28005, MR 0873903
Reference: [Š] Šleich P.: Sets of type $H^{(s)}$ are $\sigma$-bilaterally porous.unpublished.
Reference: [Z$_1$] Zajíček L.: Sets of $\sigma$-porosity and sets of $\sigma$-porosity(q).Časopis Pěst. Mat. 101 (1976), 350-359. Zbl 0341.30026, MR 0457731
Reference: [Z$_2$] Zajíček L.: Porosity and $\sigma$-porosity.Real Analysis Exchange 13 (1987-88), 314-350. MR 0943561
Reference: [Z$_3$] Zajíček L.: A note on $\sigma$-porous sets.Real Analysis Exchange 17.1 (1991-92), 18.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-2_14.pdf 191.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo