Previous |  Up |  Next

Article

Title: Monotone homogeneity of dendrites (English)
Author: Charatonik, Janusz J.
Author: Charatonik, Włodzimierz J.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 2
Year: 1997
Pages: 361-370
.
Category: math
.
Summary: Sufficient as well as necessary conditions are studied for a dendrite or a dendroid to be homogeneous with respect to monotone mappings. The obtained results extend ones due to H. Kato and the first named author. A number of open problems are asked. (English)
Keyword: confluent
Keyword: dendrite
Keyword: dendroid
Keyword: homeomorphism
Keyword: homogeneous
Keyword: mapping
Keyword: mo\-no\-tone
Keyword: order of a point
Keyword: ramification
Keyword: standard
Keyword: universal
MSC: 54C10
MSC: 54F50
MSC: 54H20
idZBL: Zbl 0886.54030
idMR: MR1455503
.
Date available: 2009-01-08T18:31:30Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118934
.
Reference: [1] Charatonik J.J.: The property of Kelley and confluent mappings.Bull. Polish Acad. Sci. Math. 31 (1983), 375-380. Zbl 0544.54028, MR 0756917
Reference: [2] Charatonik J.J.: Generalized homogeneity of curves and a question of H. Kato.Bull. Polish Acad. Sci. Math. 36 (1988), 409-411. Zbl 0767.54030, MR 1101430
Reference: [3] Charatonik J.J.: Monotone mappings of universal dendrites.Topology Appl. 38 (1991), 163-187. Zbl 0726.54012, MR 1094549
Reference: [4] Charatonik J.J., Charatonik W.J., Prajs J.R.: Mapping hierarchy for dendrites.Dissertationes Math. (Rozprawy Mat.) 333 (1994), 1-52. Zbl 0822.54009, MR 1279238
Reference: [5] Charatonik J.J., Eberhart C.: On smooth dendroids.Fund. Math. 67 (1970), 297-322. Zbl 0192.60002, MR 0275372
Reference: [6] Charatonik W.J., Dilks A.: On self-homeomorphic spaces.Topology Appl. 55 (1994), 215-238. Zbl 0788.54040, MR 1259506
Reference: [7] Cook H., Ingram W.T., Kuperberg K.T., Lelek A., Minc P. (editors): Continua, with the Houston problem book.M. Dekker, 1995. MR 1326830
Reference: [8] Czuba S.T.: On dendroids with Kelley's property.Proc. Amer. Math. Soc. 102 (1988), 728-730. Zbl 0648.54030, MR 0929011
Reference: [9] Eberhart C., Fugate J.B., Gordh G.R., Jr.: Branchpoint covering theorems for confluent and weakly confluent maps.Proc. Amer. Math. Soc. 55 (1976), 409-415. Zbl 0335.54010, MR 0410703
Reference: [10] Goodkyoontz J.T., Jr.: Some functions on hyperspaces of hereditarily unicoherent continua.Fund. Math. 95 (1977), 1-10. MR 0436097
Reference: [11] Gordh G.R., Jr., Lum L.: Monotone retracts and some characterizations of dendrites.Proc. Amer. Math. Soc. 59 (1976), 156-158. Zbl 0304.54034, MR 0423317
Reference: [12] Kato H.: Generalized homogeneity of continua and a question of J.J. Charatonik.Houston J. Math. 13 (1987), 51-63. Zbl 0635.54017, MR 0884233
Reference: [13] Kato H.: On problems of H. Cook.Topology Appl. 26 (1987), 219-228. Zbl 0612.54042, MR 0904468
Reference: [14] Kuratowski K.: Topology, vol. II.Academic Press and PWN, 1968. MR 0259835
Reference: [15] Lum L.: A characterization of local connectivity in dendroids.in: Studies in Topology, Academic Press, 1975, pp.331-338. Zbl 0306.54050, MR 0358739
Reference: [16] Maćkowiak T.: Semi-confluent mappings and their invariants.Fund. Math. 69 (1973), 251-264. MR 0321044
Reference: [17] Maćkowiak T.: Continuous mappings on continua.Dissertationes Math. (Rozprawy Mat.) 158 (1979), 1-91. MR 0522934
Reference: [18] Mazurkiewicz S.: Sur les continus homogènes.Fund. Math. 5 (1924), 137-146.
Reference: [19] Nikiel J.: A characterization of dendroids with uncountably many endpoints in the classical sense.Houston J. Math. 9 (1983), 421-432. MR 0719101
Reference: [20] Nikiel J.: On Gehman dendroids.Glasnik Mat. 20 (40) (1985), 203-214. Zbl 0684.54021, MR 0818624
Reference: [21] Whyburn G.T.: Analytic topology.Amer. Math. Soc., 1942. Zbl 0117.15804, MR 0007095
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-2_17.pdf 215.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo