Previous |  Up |  Next

Article

Title: Special almost P-spaces (English)
Author: Fedeli, Alessandro
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 2
Year: 1997
Pages: 371-374
.
Category: math
.
Summary: Motivated by some examples, we introduce the concept of special almost P-space and show, using the reflection principle, that for every space $X$ of this kind the inequality ``$|X| \leq \psi_{c}(X)^{t(X)}$" holds. (English)
Keyword: cardinal function
Keyword: almost P-space
MSC: 54A25
MSC: 54G99
idZBL: Zbl 0886.54032
idMR: MR1455504
.
Date available: 2009-01-08T18:31:35Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118935
.
Reference: [1] Dow A.: An introduction to applications of elementary submodels to topology.Topology Proc. 13 (1988), 17-72. Zbl 0696.03024, MR 1031969
Reference: [2] Dow A.: More set-theory for topologists.Topology Appl. 64 (1995), 243-300. Zbl 0837.54001, MR 1342520
Reference: [3] Engelking R.: General Topology.Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [4] Fedeli A., Watson S.: Elementary submodels and cardinal functions.Topology Proc., to appear. Zbl 0894.54008, MR 1429175
Reference: [5] Hodel R.E.: Cardinal Functions I.in: Handbook of Set-theoretic Topology, (Kunen K. and Vaughan J.E., eds.), North Holland, 1984, pp.1-61. Zbl 0559.54003, MR 0776620
Reference: [6] Juhàsz I.: Cardinal Functions in Topology-ten years later.Mathematical Centre Tracts 123, Amsterdam, 1980. MR 0576927
Reference: [7] Levy R.: Almost P-spaces.Can. J. Math. 29 (1977), 284-288. Zbl 0342.54032, MR 0464203
Reference: [8] van Mill J.: An introduction to $\betaømega$.in: Handbook of Set-theoretic Topology, (Kunen K. and Vaughan J.E., eds.), North Holland, 1984, pp.503-567. MR 0776630
Reference: [9] Watson S.: The construction of topological spaces: Planks and Resolutions.in: Recent Progress in General Topology (Hušek M. and Van Mill J., eds.), North Holland, 1992, pp.675-757. Zbl 0803.54001, MR 1229141
Reference: [10] Watson S.: The Lindelöf number of a power; an introduction to the use of elementary submodels in general topology.Topology Appl. 58 (1994), 25-342. Zbl 0836.54004, MR 1280708
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-2_18.pdf 171.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo