Previous |  Up |  Next

Article

Title: The inverse distribution for a dichotomous random variable (English)
Author: Bona, Elisabetta
Author: Sacchetti, Dario
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 2
Year: 1997
Pages: 385-394
.
Category: math
.
Summary: In this paper we will deal with the determination of the inverse of a dichotomous probability distribution. In particular it will be shown that a dichotomous distribution admit inverse if and only if it corresponds to a random variable assuming values $(0,a)$, $\,a\in \Bbb R^{+}$. Moreover we will provide two general results about the behaviour of the inverse distribution relative to the power and to a linear transformation of a measure. (English)
Keyword: inverse measure
Keyword: inverse probability distribution
Keyword: Laplace transform
Keyword: variance function
MSC: 60E05
MSC: 60E10
MSC: 62E10
MSC: 62E15
idZBL: Zbl 0890.60014
idMR: MR1455507
.
Date available: 2009-01-08T18:35:00Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118938
.
Reference: [1] Dieudonné J.: Infinitesimal Calculus.Houghton Hifflin, Boston, 1971. MR 0349286
Reference: [2] Guest P.B.: Laplace transforms and an introduction to distributions.Series mathematics and its applications, Ellis Horwood, 1991. Zbl 0734.44002, MR 1287158
Reference: [3] Mora M.: Classification des functions-variance cubiques des families exponentielles.C.R. Acad. Sci. Paris 302 sér. 1, 16 (1986), 582-591. MR 0844163
Reference: [4] Letac G., Mora M.: Natural real exponential families with cubic variance functions.The Annals of Statistics 18 (1990), 1-37. Zbl 0714.62010, MR 1041384
Reference: [5] Morris C.N.: Natural exponential families with quadratic variance functions.The Annals of Statistics 10 (1982), 65-80. Zbl 0498.62015, MR 0642719
Reference: [6] Sacchetti D.: Inverse distributions: an example of non existence.Accademia di scienze, lettere ed arti di Palermo, 1993.
Reference: [7] Serrecchia A.: Inverse distributions.Publ. de l'Inst. de Stat. de l'Univ. de PARIS XXXI 1 (1986), 71-85. Zbl 0651.62010, MR 0903423
Reference: [8] Seshadri V.: The Inverse Gaussian Distribution.Clarendon Press, Oxford, 1993. Zbl 0942.62011, MR 1306281
Reference: [9] Tweedie H.C.K.: Inverse statistical deviates.Nature (1945), 155-453. MR 0011907
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-2_21.pdf 210.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo