Previous |  Up |  Next

Article

Title: Equations with discontinuous nonlinear semimonotone operators (English)
Author: Buong, Nguyen
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 40
Issue: 1
Year: 1999
Pages: 7-12
.
Category: math
.
Summary: The aim of this paper is to present an existence theorem for the operator equation of Hammerstein type $x+KF(x)=0$ with the discontinuous semimonotone operator $F$. Then the result is used to prove the existence of solution of the equations of Urysohn type. Some examples in the theory of nonlinear equations in $L_p(\Omega )$ are given for illustration. (English)
Keyword: semimonotone operators
Keyword: uniformly convex Banach spaces
MSC: 45G10
MSC: 45N05
MSC: 47H15
MSC: 47H30
MSC: 47J05
MSC: 47N20
idZBL: Zbl 1060.47509
idMR: MR1715199
.
Date available: 2009-01-08T18:49:21Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119060
.
Reference: [1] Amann H.: Ein Existenz und Eindeutigkeitssatz fur die Hammersteinshe Gleichung in Banachraumen.Math. Z. 111 (1969), 175-190. MR 0254687
Reference: [2] Amann H.: Uber die naherungsweise Losung nichlinearer Integralgleichungen.Numer. Math. 19 (1972), 29-45. MR 0303772
Reference: [3] Brezis H., Browder F.: Nonlinear integral equations and systems of Hammerstein's type.Adv. Math. 10 (1975), 115-144. MR 0394341
Reference: [4] Brezis H., Sibony M.: Méthod d'approximation et d'itération pour les opérateurs monotones.Arch. Rat. Mech. Anal. 28 (1968), 1 59-82. MR 0220110
Reference: [5] Buong N.: On solution of the operator equation of Hammerstein type with semimonotone and discontinuous nonlinearity (in Vietnamese).J. Math. 12 (1984), 25-28.
Reference: [6] Buong N.: On approximate solutions of Hammerstein equation in Banach spaces (in Russian).Ukrainian Math. J. 8 (1985), 1256-1260.
Reference: [7] Gaidarov D.P., Raguimkhanov P.K.: On integral inclusion of Hammerstein (in Russian).Sibirian Math. J. 21 (1980), 2 19-24. MR 0569173
Reference: [8] Ganesh M., Joshi M.: Numerical solvability of Hammerstein equations of mixed type.IMA J. Numer. Anal. 11 (1991), 21-31. MR 1089546
Reference: [9] Gupta C.P.: Nonlinear equations of Urysohn's type in a Banach space.Comment. Math. Univ. Carolinae 16 (1975), 377-386. Zbl 0326.47058, MR 0500344
Reference: [10] Emellianov C.V.: Systems of Automatic Control with Variable Structure (in Russian).Moscow, Nauka, 1967.
Reference: [11] Joshi M.: Existence theorem for a generalized Hammerstein type equation.Comment. Math. Univ. Carolinae 15 (1974), 283-291. Zbl 0291.47034, MR 0348569
Reference: [12] Krasnoselskii A.M.: On elliptic equations with discontinuous nonlinearities (in Russian).Dokl. AN RSPP 342 (1995), 6 731-734. MR 1346871
Reference: [13] Pavlenko V.N.: Nonlinear equations with discontinuous operators in Banach space (in Russian).Ukrainian Math. J. 31 (1979), 5 569-572. MR 0552495
Reference: [14] Pavlenko V.N.: Existence of solution for nonlinear equations involving discontinuous semimonotone operators (in Russian).Ukrainian Math. J. 33 (1981), 4 547-551.
Reference: [15] Raguimkhanov: Concerning an existence problem for solution of Hammerstein equation with discontinuous mappings (in Russian).Izvestia Vukov, Math. (1975), 10 62-70.
Reference: [16] Vaclav D.: Monotone Operators and Applications in Control and Network Theory.Elsevier, Amsterdam-Oxford-New York, 1979. Zbl 0425.93002, MR 0554232
Reference: [17] Vainberg M.M.: Variational Method and Method of Monotone Operators (in Russian).Moscow, Nauka, 1972. MR 0467427
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_40-1999-1_2.pdf 178.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo