Previous |  Up |  Next

Article

Title: On generalized games in $H$-spaces (English)
Author: Cubiotti, Paolo
Author: Nordo, Giorgio
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 40
Issue: 1
Year: 1999
Pages: 175-180
.
Category: math
.
Summary: We show that a recent existence result for the Nash equilibria of generalized games with strategy sets in $H$-spaces is false. We prove that it becomes true if we assume, in addition, that the feasible set of the game (the set of all feasible multistrategies) is closed. (English)
Keyword: $H$-spaces
Keyword: generalized games
Keyword: Nash equilibria
Keyword: $H$-convexity
Keyword: open lower sections
Keyword: fixed points
MSC: 54H99
MSC: 90D06
MSC: 90D10
MSC: 91A40
MSC: 91A44
idZBL: Zbl 1059.91502
idMR: MR1715210
.
Date available: 2009-01-08T18:50:40Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119071
.
Reference: [1] Aubin J.P.: Optima and Equilibria.Springer-Verlag, Berlin, 1993. Zbl 0930.91001, MR 1217485
Reference: [2] Aubin J.P., Frankowska H.: Set-Valued Analysis.Birkhäuser, Boston, 1990. Zbl 1168.49014, MR 1048347
Reference: [3] Bardaro C., Ceppitelli R.: Some further generalizations of Knaster-Kuratowski-Mazurkiewicz theorem and minimax inequalities.J. Math. Anal. Appl. 132 (1988), 484-490. Zbl 0667.49016, MR 0943521
Reference: [4] Bardaro C., Ceppitelli R.: Applications of the generalized Knaster-Kuratowski-Mazurkiewicz theorem to variational inequalities.J. Math. Anal. Appl. 137 (1989), 46-58. MR 0981922
Reference: [5] Bardaro C., Ceppitelli R.: Fixed point theorems and vector-valued minimax theorems.J. Math. Anal. Appl. 146 (1990), 363-373. Zbl 0698.49011, MR 1043106
Reference: [6] Cubiotti P.: Existence of solutions for lower semicontinuous quasi-equilibrium problems.Comput. Math. Applic. 30 (12) (1995), 11-22. Zbl 0844.90094, MR 1360323
Reference: [7] Harker P.T.: Generalized Nash games and quasi-variational inequalities.European J. Oper. Res. 54 (1991), 81-94. Zbl 0754.90070
Reference: [8] Huang Y.: Fixed point theorems with an application in generalized games.J. Math. Anal. Appl. 186 (1994), 634-642. Zbl 0814.54029, MR 1293845
Reference: [9] Klein E., Thompson A.C.: Theory of Correspondences.John Wiley and Sons, New York, 1984. Zbl 0556.28012, MR 0752692
Reference: [10] Tian G., Zhou J.: The Maximum theorem and the existence of Nash equilibria of (generalized) games without lower semicontinuities.J. Math. Anal. Appl. 166 (1992), 351-364. MR 1160931
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_40-1999-1_13.pdf 189.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo