Previous |  Up |  Next

Article

Keywords:
Wadge hierarchy; function spaces; pointwise convergence
Summary:
We show that if $X$ is a $\Sigma _1^1$ separable metrizable space which is not $\sigma $-compact then $C_p^* (X)$, the space of bounded real-valued continuous functions on $X$ with the topology of pointwise convergence, is Borel-$\Pi _1^1$-complete. Assuming projective determinacy we show that if $X$ is projective not $\sigma $-compact and $n$ is least such that $X$ is $\Sigma _n^1$ then $C_p (X)$, the space of real-valued continuous functions on $X$ with the topology of pointwise convergence, is Borel-$\Pi _n^1$-complete. We also prove a simultaneous improvement of theorems of Christensen and Kechris regarding the complexity of a subset of the hyperspace of the closed sets of a Polish space.
References:
[1] Cauty R., Dobrowolski T., Marciszewski W.: A contribution to the topological classification of the spaces $C_p(X)$. Fund. Math. 142 (1993), 269-301. MR 1220554
[2] Christensen J.P.R.: Topology and Borel Structure. North-Holland, 1974. MR 0348724 | Zbl 0273.28001
[3] Dasgupta A.: Studies in Borel Sets. Ph.D. thesis, University of California at Berkeley, 1994.
[4] Dijkstra J., Grilliot T., Lutzer D., van Mill J.: Function spaces of low Borel complexity. Proc. Amer. Math. Soc. 94 (1985), 703-710. MR 0792287 | Zbl 0525.54010
[5] Dobrowolski T., Marciszewski W.: Classifications of function spaces with the pointwise topology determined by a countable dense set. Fund. Math. 148 (1995), 35-62. MR 1354937
[6] Dobrowolski T., Marciszewski W., Mogilski J.: On topological classification of function spaces $C_p(X)$ of low Borel complexity. Trans. Amer. Math. Soc. 328 (1991), 307-324. MR 1065602
[7] Engelking R.: General Topology. Heldermann, 1989. MR 1039321 | Zbl 0684.54001
[8] Kechris A.S.: Classical Descriptive Set Theory. Springer-Verlag, 1995. MR 1321597 | Zbl 0819.04002
[9] Kechris A.S.: On the concept of ${\Pi}^{1}_{1}$-completeness. Proc. Amer. Math. Soc. 125 (1997), 1811-1814. MR 1372034 | Zbl 0864.03034
[10] Kechris A.S., Louveau A., Woodin W.H.: The structure of $\sigma$-ideals of compact sets. Trans. Amer. Math. Soc. 301 (1987), 263-288. MR 0879573 | Zbl 0633.03043
[11] Kuratowski K.: Topology, vol. 1. Academic Press, 1966. MR 0217751
[12] Lutzer D., van Mill J., Pol R.: Descriptive complexity of function spaces. Trans. Amer. Math. Soc. 291 (1985), 121-128. MR 0797049 | Zbl 0574.54042
[13] Marciszewski W.: On analytic and coanalytic function spaces $C_p(X)$. Topology Appl. 50 (1993), 241-248. MR 1227552
[14] van Mill J.: Infinite-Dimensional Topology. North-Holland, 1989. MR 0977744 | Zbl 1027.57022
[15] Okunev O.: On analyticity in cosmic spaces. Comment. Math. Univ. Carolinae 34 (1993), 185-190. MR 1240216 | Zbl 0837.54009
[16] Wadge W.: Reducibility and Determinateness on the Baire Space. Ph.D. thesis, University of California at Berkeley, 1983.
Partner of
EuDML logo