Title:
|
The Laplace derivative (English) |
Author:
|
Svetic, R. E. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
42 |
Issue:
|
2 |
Year:
|
2001 |
Pages:
|
331-343 |
. |
Category:
|
math |
. |
Summary:
|
A function $f:\Bbb R \rightarrow \Bbb R$ is said to have the $n$-th Laplace derivative on the right at $x$ if $f$ is continuous in a right neighborhood of $x$ and there exist real numbers $\alpha_0, \ldots, \alpha_{n-1}$ such that $s^{n+1}\int_0^\delta e^{-st}[f(x+t)-\sum_{i=0}^{n-1}\alpha_i t^i/i!]\,dt$ converges as $s\rightarrow +\infty$ for some $\delta>0$. There is a corresponding definition on the left. The function is said to have the $n$-th Laplace derivative at $x$ when these two are equal, the common value is denoted by $f_{\langle n\rangle }(x)$. In this work we establish the basic properties of this new derivative and show that, by an example, it is more general than the generalized Peano derivative; hence the Laplace derivative generalizes the Peano and ordinary derivatives. (English) |
Keyword:
|
Peano derivative |
Keyword:
|
generalized Peano derivative |
Keyword:
|
Laplace derivative |
Keyword:
|
Laplace transform |
Keyword:
|
Tauberian theorem |
MSC:
|
26A21 |
MSC:
|
26A24 |
MSC:
|
26A48 |
MSC:
|
40E05 |
MSC:
|
44A10 |
idZBL:
|
Zbl 1051.26004 |
idMR:
|
MR1832151 |
. |
Date available:
|
2009-01-08T19:10:23Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119247 |
. |
Reference:
|
[1] Bullen P.S., Mukhopadhyay S.N.: Properties of Baire$^\star$-1 Darboux functions and some mean value theorems for Peano derivatives.Math. Japon. 36 (1991), 309-316. Zbl 0726.26002, MR 1095745 |
Reference:
|
[2] Doetsch G.: Handbuch der Laplace-Transformation.Vol. 1, Birkhäuser Verlag, Basel, 1950. Zbl 0319.44001, MR 0344808 |
Reference:
|
[3] Fejzić H.: The Peano derivatives.Doct. Dissertation, Michigan State University, 1992. |
Reference:
|
[4] Fejzić H.: On generalized Peano and Peano derivatives.Fund. Math. 143 (1993), 55-74. MR 1234991 |
Reference:
|
[5] Fejzić H., Rinne D.: Continuity properties of Peano derivatives in several variables.Real Anal. Exchange 21 (1995-6), 292-298. MR 1377538 |
Reference:
|
[6] Laczkovich M.: On the absolute Peano derivatives.Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 21 (1978), 83-97. Zbl 0425.26005, MR 0536205 |
Reference:
|
[7] Lee C.-M.: On the approximate Peano derivatives.J. London Math. Soc. 12 (1976), 475-478. Zbl 0317.26005, MR 0399378 |
Reference:
|
[8] Lee C.-M.: Generalizations of Cesàro continuous functions and integrals of Perron type.Trans. Amer. Math. Soc. 266 (1981), 461-481. Zbl 0495.26003, MR 0617545 |
Reference:
|
[9] Lee C.-M.: On absolute Peano derivatives.Real Anal. Exchange 8 (1982-3), 228-243. Zbl 0535.26003, MR 0694511 |
Reference:
|
[10] Lee C.-M.: On generalized Peano derivatives.Trans. Amer. Math. Soc. 275 (1983), 381-396. Zbl 0506.26006, MR 0678358 |
Reference:
|
[11] Lee C.-M.: On generalizations of exact Peano derivatives.Contemp. Math. 42 (1985), 97-103. Zbl 0575.26004, MR 0807982 |
Reference:
|
[12] Mukhopadhyay S.N., Mitra S.: Measurability of Peano derivatives and approximate Peano derivatives.Real Anal. Exchange 20 (1994-5), 768-775. MR 1348098 |
Reference:
|
[13] Oliver H.W.: The exact Peano derivative.Trans. Amer. Math. Soc. 76 (1954), 444-456. Zbl 0055.28505, MR 0062207 |
Reference:
|
[14] Svetic R.E., Volkmer H.: On the ultimate Peano derivative.J. Math. Anal. Appl. 218 (1998), 439-452. Zbl 0893.26001, MR 1605380 |
Reference:
|
[15] Verblunsky S.: On the Peano derivatives.Proc. London Math. Soc. 22 (1971), 313-324. Zbl 0209.36401, MR 0285678 |
Reference:
|
[16] Weil C.E.: The Peano notion of higher order differentiation.Math. Japon. 42 (1995), 587-600. Zbl 0841.26003, MR 1363850 |
Reference:
|
[17] Widder D.V.: An Introduction to Transform Theory.Academic Press, New York, 1971. Zbl 0219.44001 |
. |