Previous |  Up |  Next

Article

Title: $\Sigma $-products of paracompact Čech-scattered spaces (English)
Author: Tanaka, Hidenori
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 47
Issue: 1
Year: 2006
Pages: 127-140
.
Category: math
.
Summary: In this paper, we shall discuss $\Sigma $-products of paracompact Čech-scattered spaces and show the following: (1) Let $\Sigma $ be a $\Sigma $-product of paracompact Čech-scattered spaces. If $\Sigma $ has countable tightness, then it is collectionwise normal. (2) If $\Sigma$ is a $\Sigma$-product of first countable, paracompact (subparacompact) Čech-scattered spaces, then it is shrinking (subshrinking). (English)
Keyword: $\Sigma $-product
Keyword: C-scattered
Keyword: Čech-scattered
Keyword: paracompact
Keyword: subparacompact
Keyword: collectionwise normal
Keyword: shrinking
Keyword: subshrinking
Keyword: countable tightness
MSC: 54B10
MSC: 54D15
MSC: 54D20
MSC: 54G12
idZBL: Zbl 1150.54011
idMR: MR2223972
.
Date available: 2009-05-05T16:56:06Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119579
.
Reference: [AMT] Aoki E., Mori N., Tanaka H.: Paracompactness and the Lindelöf property in countable products.Topology Appl. 146-147 (2005), 57-66. Zbl 1065.54013, MR 2107135
Reference: [Co] Corson H.H.: Normality in subsets of product spaces.Amer. J. Math. 81 (1959), 785-796. Zbl 0095.37302, MR 0107222
Reference: [E] Engelking R.: General Topology.Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [Gu] Gul'ko S.P.: On the properties of subsets of $\Sigma$-products.Soviet Math. Dokl. 18 (1977), 1438-1442.
Reference: [HaT] Hanaoka J., Tanaka H.: $\Sigma$-products of paracompact $\Cal{DC}$-like spaces.Topology Proc. 26 (2000-2001), 199-212. MR 1966992
Reference: [HiT] Higuchi S., Tanaka H.: Covering properties in countable products, II.preprint. Zbl 1150.54010, MR 2281011
Reference: [HZ] Hohti A., Ziqiu Y.: Countable products of Čech-scattered supercomplete spaces.Czechoslovak Math. J. 49 (1999), 569-583. Zbl 1003.54006, MR 1708354
Reference: [K1] Kombarov A.P.: On $\Sigma$-products of topological spaces.Soviet Math. Dokl. 13 (1971), 1101-1104. Zbl 0243.54001, MR 0284969
Reference: [K2] Kombarov A.P.: On tightness and normality of $\Sigma$-products.Soviet Math. Dokl. 19 (1978), 403-407. MR 0493933
Reference: [KM] Kombarov A.P., Malykhin V.I.: On $\Sigma$-products.Soviet Math. Dokl. 14 (1973), 1780-1783.
Reference: [R1] Rudin M.E.: $\Sigma$-products of metric spaces are normal.preprint.
Reference: [R2] Rudin M.E.: The shrinking property.Canad. Math. Bull. 28 (1983), 385-388. Zbl 0536.54013, MR 0716576
Reference: [TY] Tanaka H., Yajima Y.: $\Sigma$-products of paracompact C-scattered spaces.Topology Appl. 124 (2002), 39-46. MR 1926133
Reference: [Te] Telgársky R.: C-scattered and paracompact spaces.Fund. Math. 73 (1971), 59-74. MR 0295293
Reference: [Y1] Yajima Y.: On $\Sigma$-products of $\Sigma$-spaces.Fund. Math. 123 (1984), 29-37. Zbl 0556.54008, MR 0755616
Reference: [Y2] Yajima Y.: The shrinking property of $\Sigma$-products.Tsukuba J. Math. 13 (1989), 83-98. Zbl 0697.54006, MR 1003593
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_47-2006-1_11.pdf 328.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo