Previous |  Up |  Next

Article

Title: How non-symmetric can a copula be? (English)
Author: Klement, Erich Peter
Author: Mesiar, Radko
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 47
Issue: 1
Year: 2006
Pages: 141-148
.
Category: math
.
Summary: A two-place function measuring the degree of non-symmetry for (quasi-)co\-pu\-las is considered. We construct copulas which are maximally non-symmetric on certain subsets of the unit square. It is shown that there is no copula (and no quasi-copula) which is maximally non-symmetric on the whole unit square. (English)
Keyword: copula
Keyword: quasi-copula
Keyword: symmetry
Keyword: opposite diagonal
MSC: 62E10
MSC: 62H05
idZBL: Zbl 1150.62027
idMR: MR2223973
.
Date available: 2009-05-05T16:56:12Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119580
.
Reference: [1] Alsina C., Nelsen R.B., Schweizer B.: On the characterization of a class of binary operations on distribution functions.Statist. Probab. Lett. 17 (1993), 85-89. Zbl 0798.60023, MR 1223530
Reference: [2] Capéraà P., Fougères A.-L., Genest C.: A nonparametric estimation procedure for bivariate extreme value copulas.Biometrika 84 (1997), 567-577. MR 1603985
Reference: [3] Capéraà P., Fougères A.-L., Genest C.: Bivariate distributions with given extreme value attractor.J. Multivariate Anal. 72 (2000), 30-49. MR 1747422
Reference: [4] Genest C., Quesada Molina J.J., Rodríguez Lallena J.A., Sempi C.: A characterization of quasi-copulas.J. Multivariate Anal. 69 (1999), 193-205. MR 1703371
Reference: [5] Klement E.P., Kolesárová A.: Extension to copulas and quasi-copulas as special $1$-Lipschitz aggregation operators.Kybernetika (Prague) 41 (2005), 329-348. MR 2181422
Reference: [6] Klement E.P., Mesiar R., Pap E.: Triangular Norms.Kluwer Academic Publishers, Dordrecht, 2000. Zbl 1087.20041, MR 1790096
Reference: [7] Klement E.P., Mesiar R., Pap E.: Archimax copulas and invariance under transformations.C.R. Math. Acad. Sci. Paris 340 (2005), 755-758. Zbl 1126.62040, MR 2141065
Reference: [8] Mikusiński P., Taylor M.D.: A remark on associative copulas.Comment. Math. Univ. Carolinae 40 (1999), 789-793. MR 1756554
Reference: [9] Nelsen R.B.: An introduction to copulas.Lecture Notes in Statistics 139, Springer, New York, 1999. Zbl 1152.62030, MR 1653203
Reference: [10] Schweizer B., Sklar A.: Probabilistic Metric Spaces.North-Holland, New York, 1983. Zbl 0546.60010, MR 0790314
Reference: [11] Sklar A.: Fonctions de répartition à $n$ dimensions et leurs marges.Publ. Inst. Statist. Univ. Paris 8 (1959), 229-231. MR 0125600
Reference: [12] Sklar A.: Random variables, joint distribution functions, and copulas.Kybernetika (Prague) 9 (1973), 449-460. Zbl 0292.60036, MR 0345164
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_47-2006-1_12.pdf 1.116Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo