Previous |  Up |  Next

Article

Title: The partial non interacting problem: Structural and geometric solutions (English)
Author: García, Juan Carlos Martínez
Author: Malabre, Michel
Author: Rabah, Rabah
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 30
Issue: 6
Year: 1994
Pages: 645-658
.
Category: math
.
MSC: 93B11
MSC: 93B27
MSC: 93B50
MSC: 93B52
MSC: 93C05
idZBL: Zbl 0827.93013
idMR: MR1323667
.
Date available: 2009-09-24T18:51:59Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/125485
.
Reference: [1] G. Basile, G. Marro: Controlled Invariants and Conditioned Invariants in Linear System Theory.Prentice Hall, New Jersey 1992. MR 1149379
Reference: [2] C. Commault, J. M. Dion: Structure at Infinity of Linear Multivariable Systems: A Geometric Approach.Presented at the 20th IEEE Conference on Decision and Control San Diego, CA 1981. Zbl 0501.93012, MR 0680328
Reference: [3] J. Descusse, J. M. Dion: On the structure at infinity of linear square decoupled systems.IEEE Trans. Automat. Control AC-27 (1982), 3, 971-974. Zbl 0485.93042, MR 0680500
Reference: [4] J. Descusse J. F. Lafay, M. Malabre: On the structure at infinity of linear block-decouplable systems: The general case.IEEE Trans. Automat. Control AC-28 (1983), 12, 1115-1118. MR 0729022
Reference: [5] E. Emre, L. M. Silverman: Partial model matching of linear systems.IEEE Trans. Automat. Control AC-25 (1980), 4, 280-281. Zbl 0432.93026, MR 0567391
Reference: [6] P. L. Falb, W. A. Wolovich: Decoupling in the Design and Synthesis of Multivariable Control Systems.IEEE Trans. Automat. Control AC-12 (1967), 12, 651-659.
Reference: [7] A. Godot: Découplage partiel avec stabilité.Mémoire de D. E. A., Laboratoire d'Automatique de Nantes, Ecole Centrale de Nantes, septembre 1994.
Reference: [8] M. L. J. Hautus, M. Heymann: Linear feedback, an algebraic approach.SIAM J. Control Optim. 16 (1978), 1, 83-105. Zbl 0385.93015, MR 0476024
Reference: [9] V. Kučera, J. Descusse: On the determination of the structure at infinity of a rational matrix.Annales 1982, pp. 37-44, Ecole Nationale Superieure de Mecanique, Nantes, France, 1982.
Reference: [10] M. Malabre: Structure à l'Infini des Triplets Invariants. Application à la Poursuite Parfaite de Modèle.Lecture Notes in Control and Inform. Sci. 44 (1982), 43-53. Zbl 0566.93009, MR 0833317
Reference: [11] M. Malabre, J. C. Martinez Garcia: The partial model matching or partial disturbance rejection problem: Geometric and structural solutions.IEEE Trans. Automat. Control, to appear. Zbl 0823.93013, MR 1312912
Reference: [12] M. Malabre, R. Rabah: Structure at infinity, model matching and disturbance rejection for linear systems with delays.Kybernetika 29 (1993), 5, 485-498. Zbl 0805.93008, MR 1264881
Reference: [13] J. C. Martínez García, M. Malabre: The row by row decoupling problem with stability.IEEE Trans. Automat. Control, to appear.
Reference: [14] J. C. Martínez García M. Malabre, V. Kučera: The partial model matching problem with stability.Systems Control Lett., to appear. MR 1307129
Reference: [15] A. I. G. Vardulakis: Linear Multivariable Control: Algebraic Analysis and Synthesis Methods.John Wiley, New York 1991. Zbl 0751.93002, MR 1104222
Reference: [16] C. G. Verghese: Infinite Frequency Behaviour in Generalized Dynamical Systems.PhD Dissertation, Stanford University 1978.
Reference: [17] W. M. Wonham: Linear Multivariable Control: A Geometric Approach.Springer-Verlag, New York 1985. Zbl 0609.93001, MR 0770574
.

Files

Files Size Format View
Kybernetika_30-1994-6_9.pdf 941.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo