Previous |  Up |  Next

Article

Title: A compact variable metric algorithm for linearly constrained nonlinear minimax approximation (English)
Author: Lukšan, Ladislav
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 21
Issue: 6
Year: 1985
Pages: 405-427
.
Category: math
.
MSC: 49M37
MSC: 65D15
MSC: 65K05
MSC: 90C30
idZBL: Zbl 0594.90078
idMR: MR831100
.
Date available: 2009-09-24T17:49:48Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/125885
.
Reference: [1] K. W. Brodlie A. R. Gourlay, and J. Greenstadt: Rank one and two corrections to positive definite matrices expressed in product form.J. Inst. Math. Appl. 11 (1973), 1, 73 - 82. MR 0331770
Reference: [2] R. Fletcher: The calculation of feasible points for linearly constrained optimization problems.A.E.R.E. Harwell Rept. No. R-6354 (1970).
Reference: [3] P. E. Gill, W. Murray: A numerically stable form of the simplex algorithm.Linear Algebra Appl. 7 (1973), 2,99-138. Zbl 0255.65029, MR 0321519
Reference: [4] P. E. Gill, W. Murray: Newton-type methods for unconstrained and linearly constrained optimization.Math. Programming 7 (1974), 3, 311 - 350. Zbl 0297.90082, MR 0356503
Reference: [5] S. P. Han: Variable metric methods for minimizing a class of nondifferentiable functions.Math. Programming 20 (1981), 1, 1-13. Zbl 0441.90095, MR 0594019
Reference: [6] L. Lukšan: Software package for optimization and nonlinear approximation.Proc. of the 2nd IFAC/IFIP Symposium on Software for Computer Control, Prague 1979.
Reference: [7] L. Lukšan: Quasi-Newton methods without projections for linearly constrained minimization.Kybernetika 18 (1982), 4, 307-319. MR 0688369
Reference: [8] L. Lukšan: Variable metric methods for linearly constrained nonlinear minimax approximation.Computing 30 (1983), 3, 315-334. MR 0706672
Reference: [9] L. Lukšan: Dual method for solving a special problem of quadratic programming as a sub-problem at linearly constrained nonlinear minimax approximation.Kybernetika 20 (1984), 6, 445-457. MR 0777979
Reference: [10] L. Lukšan: A compact variable metric algorithm for nonlinear minimax approximation.Computing (to appear). MR 0843944
Reference: [11] L. Lukšan: An implementation of recursive quadratic programming variable metric methods for linearly constrained nonlinear minimax approximation.Kybernetika 21 (1985), 1, 22-40. MR 0788667
Reference: [12] K. Madsen, H. Schjaer-Jacobsen: Linearly constrained minimax optimization.Math. Programming 14 (1978), 2, 208-223. Zbl 0375.65034, MR 0472055
Reference: [13] M. J. D. Powell: A fast algorithm for nonlinearly constrained optimization calculations.In: Numerical Analysis, Dundee 1977 (G. A. Watson, ed.), Lecture Notes in Mathematics 630, Springer-Verlag, Berlin 1978. MR 0483447
Reference: [14] K. Ritter: A variable metric method for linearly constrained minimization problems.In: Nonlinear Programming 3 (O. L. Mangasarian, R. R. Meyer and S. M. Robinson, eds.), Academic Press, London 1978. Zbl 0464.65041, MR 0507864
Reference: [15] P. Wolfe: Finding the nearest point in a polytope.Math. Programming 11 (1976), 2, 128-149. Zbl 0352.90046, MR 0452683
.

Files

Files Size Format View
Kybernetika_21-1985-6_1.pdf 1.290Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo