Previous |  Up |  Next

Article

Title: A convergent algorithm for solving linear programs with an additional reverse convex constraint (English)
Author: Muu, Lê Dung
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 21
Issue: 6
Year: 1985
Pages: 428-435
.
Category: math
.
MSC: 49D35
MSC: 49M37
MSC: 65K05
MSC: 90C05
MSC: 90C30
idZBL: Zbl 0596.90081
idMR: MR831101
.
Date available: 2009-09-24T17:49:55Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/125889
.
Reference: [1] M. Avriel, A. C. Williams: Complementary geometric programming.SIAM J. Appl. Math. /P (1970), 125-141. Zbl 0319.90035, MR 0267901
Reference: [2] M. Avriel, A. C. Williams: An extension of geometric programming with applications in engineering optimization.J. Engng. Math. 5 (1971), 187-194.
Reference: [3] P. P. Bansal, S. E. Jacobsen: Characterization of local solution for a class of nonconvex programs.J. Optim. Theory Appl. 15 (1975), 127-131. MR 0401151
Reference: [4] R. J. Hillestad: Optimization problems subject to a budged constraint with economies of scale.Oper. Res. 23 (1975), 1091-1098. MR 0434447
Reference: [5] R. J. Hillestad, S. E. Jacobsen: Linear programs with an additional reverse convex constraint.Appl. Math. Optim. 6 (1980), 257-269. Zbl 0435.90065, MR 0576263
Reference: [6] R. J. Hillestad, S. E. Jacobsen: Reverse convex programming.Appl. Math. Optim. 6 (1980) 63-78. Zbl 0448.90044, MR 0557055
Reference: [7] R. Meyer: The validity of a family of optimization methods.SIAM J. Control 8 (1970), 41-54. Zbl 0194.20501, MR 0312915
Reference: [8] J. B. Rosen: Iterative solution of nonlinear optimal control problems.SIAM J. Control 4 (1766), 223-244. Zbl 0229.49025, MR 0189877
Reference: [9] N. V. Thoai, H. Tuy: Convergent algorithms for minimizing a concave function.Math. Oper. Res. 4 (1980), 556-565. Zbl 0472.90054, MR 0593646
Reference: [10] H. Tuy: Concave programming under linear constraints.Dokl. Akad. Nauk SSSR 159 (1964), 32-35. MR 0181465
Reference: [11] H. Tuy: Conical algorithm for solving a class of complementarity problems.Preprint series 18 (1981), Hanoi. Zbl 0618.90090, MR 0683317
Reference: [12] U. Ueing: A combinatorical method to compute a global solution of certain nonconvex optimization problems.In: Numerical Methods for Non-Linear Optimization (F. A. Lootsma ed.), pp. 223-230, Academic Press, New York 1972. MR 0429118
.

Files

Files Size Format View
Kybernetika_21-1985-6_2.pdf 399.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo