[1] A. Augustynowicz, M. Kwapisz:
On a numerical-analytic method of solving of boundary value problem for functional differential equation of neutral type. Math. Nachr. 145 (1990), 255–269.
DOI 10.1002/mana.19901450120 |
MR 1069034
[2] J. Banaś:
Applications of measures of noncompactness to various problems. Folia Scientiarum Universitatis Technicae Resoviensis 34 (1987).
MR 0884890
[3] D. Bugajewski:
On some applications of theorems on the spectral radius to differential equations. J. Anal. Appl. 16 (1997), 479–484.
MR 1459970 |
Zbl 0880.35125
[5] J. Daneš:
On local spectral radius. Čas. pěst. mat. 112 (1987), 177–187.
MR 0897643
[6] A. R. Esayan: On the estimation of the spectral radius of the sum of positive semicommutative operators (in Russian). Sib. Mat. Zhur. 7, 460–464.
[8] K.-H. Förster, B. Nagy:
On the local spectral radius of a nonnegative element with respect to an irreducible operator. Acta Sci. Math. 55 (1991), 155–166.
MR 1124954
[9] M. A. Krasnoselski et al.: Approximate solutions of operator equations. Noordhoff, Groningen, 1972.
[10] V. Müller:
Local spectral radius formula for operators in Banach spaces. Czechoslovak Math. J. 38 (1988), 726–729.
MR 0962915
[11] P. P. Zabrejko:
The contraction mapping principle in K-metric and locally convex spaces (in Russian). Dokl. Akad. Nauk BSSR 34 (1990), 1065–1068.
MR 1095667