Title:
|
On the local spectral radius in partially ordered Banach spaces (English) |
Author:
|
Zima, Mirosława |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
49 |
Issue:
|
4 |
Year:
|
1999 |
Pages:
|
835-841 |
. |
Category:
|
math |
. |
MSC:
|
34K40 |
MSC:
|
47A11 |
MSC:
|
47B60 |
MSC:
|
47B99 |
idZBL:
|
Zbl 1008.47004 |
idMR:
|
MR1746709 |
. |
Date available:
|
2009-09-24T10:28:15Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127533 |
. |
Reference:
|
[1] A. Augustynowicz, M. Kwapisz: On a numerical-analytic method of solving of boundary value problem for functional differential equation of neutral type.Math. Nachr. 145 (1990), 255–269. MR 1069034, 10.1002/mana.19901450120 |
Reference:
|
[2] J. Banaś: Applications of measures of noncompactness to various problems.Folia Scientiarum Universitatis Technicae Resoviensis 34 (1987). MR 0884890 |
Reference:
|
[3] D. Bugajewski: On some applications of theorems on the spectral radius to differential equations.J. Anal. Appl. 16 (1997), 479–484. Zbl 0880.35125, MR 1459970 |
Reference:
|
[4] D. Bugajewski, M. Zima: On the Darboux problem of neutral type.Bull. Austral. Math. Soc. 54 (1996), 451–458. MR 1419608, 10.1017/S0004972700021869 |
Reference:
|
[5] J. Daneš: On local spectral radius.Čas. pěst. mat. 112 (1987), 177–187. MR 0897643 |
Reference:
|
[6] A. R. Esayan: On the estimation of the spectral radius of the sum of positive semicommutative operators (in Russian).Sib. Mat. Zhur. 7, 460–464. |
Reference:
|
[7] L. Faina: Existence and continuous dependence for a class of neutral functional differential equations.Ann. Polon. Math. 64 (1996), 215–226. Zbl 0873.34051, MR 1410341, 10.4064/ap-64-3-215-226 |
Reference:
|
[8] K.-H. Förster, B. Nagy: On the local spectral radius of a nonnegative element with respect to an irreducible operator.Acta Sci. Math. 55 (1991), 155–166. MR 1124954 |
Reference:
|
[9] M. A. Krasnoselski et al.: Approximate solutions of operator equations.Noordhoff, Groningen, 1972. |
Reference:
|
[10] V. Müller: Local spectral radius formula for operators in Banach spaces.Czechoslovak Math. J. 38 (1988), 726–729. MR 0962915 |
Reference:
|
[11] P. P. Zabrejko: The contraction mapping principle in K-metric and locally convex spaces (in Russian).Dokl. Akad. Nauk BSSR 34 (1990), 1065–1068. MR 1095667 |
Reference:
|
[12] M. Zima: A certain fixed point theorem and its applications to integral-functional equations.Bull. Austral. Math. Soc. 46 (1992), 179–186. Zbl 0761.34048, MR 1183775, 10.1017/S0004972700011813 |
Reference:
|
[13] M. Zima: A theorem on the spectral radius of the sum of two operators and its applications.Bull. Austral. Math. Soc. 48 (1993), 427–434. MR 1248046, 10.1017/S0004972700015884 |
. |