Previous |  Up |  Next

Article

Title: Chebyshev centers in hyperplanes of $c_0$ (English)
Author: Veselý, Libor
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 4
Year: 2002
Pages: 721-729
Summary lang: English
.
Category: math
.
Summary: We give a full characterization of the closed one-codimensional subspaces of $c_0$, in which every bounded set has a Chebyshev center. It turns out that one can consider equivalently only finite sets (even only three-point sets) in our case, but not in general. Such hyperplanes are exactly those which are either proximinal or norm-one complemented. (English)
Keyword: Chebyshev centers
Keyword: proximinal hyperplanes
Keyword: space $c_0$
MSC: 41A65
MSC: 46B20
MSC: 46B25
idZBL: Zbl 1012.41029
idMR: MR1940053
.
Date available: 2009-09-24T10:55:57Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127758
.
Reference: [1] D. Amir: Best simultaneous approximation (Chebyshev centers).Parametric Optimization and Approximation (Oberwolfach 1983), Internat. Ser. Numer. Math. 72, B. Brosowski, F. Deutsch (eds.), Birkhauser-Verlag, Basel, 1985, pp. 19–35. Zbl 0563.41021, MR 0882194
Reference: [2] D. Amir and J. Mach: Chebyshev centers in normed spaces.J.  Approx. Theory 40 (1984), 364–374. MR 0740649, 10.1016/0021-9045(84)90011-X
Reference: [3] D.  Amir, J.  Mach and K. Saatkamp: Existence of Chebyshev centers, best $n$-nets and best compact approximants.Trans. Amer. Math. Soc. 271 (1982), 513–524. MR 0654848
Reference: [4] J.  Blatter and E. W.  Cheney: Minimal projections on hyperplanes in sequence spaces.Ann. Mat. Pura. Appl.  101 (1974), 215–227. MR 0358179, 10.1007/BF02417105
Reference: [5] A. L.  Garkavi: The best possible net and the best possible cross section of a set in a normed space.Izv. Akad. Nauk. SSSR 26 (1962), 87–106. (Russian) Zbl 0158.13602, MR 0136969
Reference: [6] R. B. Holmes: A Course in Optimization and Best Approximation. Lecture Notes in Math. 257.Springer-Verlag, 1972. MR 0420367
Reference: [7] L. Veselý: Generalized centers of finite sets in Banach spaces.Acta Math. Univ. Comenian. 66 (1997), 83–115. MR 1474552
Reference: [8] L.  Veselý: A Banach space in which all compact sets, but not all bounded sets, admit Chebyshev centers.Arch. Math (to appear). MR 1967268
Reference: [9] V. N. Zamjatin: The Chebyshev center in hyperspaces of continuous functions.Funktsional’nyj Analiz, vol. 12, A. V. Štraus (ed.), Ul’janovsk. Gos. Ped. Inst., Ul’janovsk, 1979, pp. 56–68. (Russian) MR 0558342
.

Files

Files Size Format View
CzechMathJ_52-2002-4_5.pdf 330.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo