Previous |  Up |  Next

Article

Title: Continuous extendibility of solutions of the Neumann problem for the Laplace equation (English)
Author: Medková, Dagmar
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 2
Year: 2003
Pages: 377-395
Summary lang: English
.
Category: math
.
Summary: A necessary and sufficient condition for the continuous extendibility of a solution of the Neumann problem for the Laplace equation is given. (English)
Keyword: Neumann problem
Keyword: Laplace equation
Keyword: continuous extendibility
MSC: 31B10
MSC: 35B60
MSC: 35B65
MSC: 35J05
MSC: 35J25
idZBL: Zbl 1075.35508
idMR: MR1983459
.
Date available: 2009-09-24T11:02:30Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127807
.
Reference: [1] T. S.  Angell, R. E.  Kleinman and J.  Král: Layer potentials on boundaries with corners and edges.Čas. pěst. mat. 113 (1988), 387–402. MR 0981880
Reference: [2] H. Bauer: Harmonische Räume und ihre Potentialtheorie.Springer Verlag, Berlin, 1966. Zbl 0142.38402, MR 0210916
Reference: [3] N.  Boboc, C.  Constantinescu and A.  Cornea: On the Dirichlet problem in the axiomatic theory of harmonic functions.Nagoya Math.  J. 23 (1963), 73–96. MR 0162957
Reference: [4] M.  Brelot: Éléments de la théorie classique du potentiel.Centre de documentation universitaire, Paris, 1961. MR 0106366
Reference: [5] Yu. D.  Burago and V. G.  Maz’ya: Potential theory and function theory for irregular regions.Zapiski Naučnyh Seminarov LOMI 3 (1967), 1–152. (Russian)
Reference: [6] E.  De Giorgi: Nuovi teoremi relativi alle misure $(r-1)$-dimensionali in uno spazi ad $r$  dimensioni.Ricerche Mat. 4 (1955), 95–113. MR 0074499
Reference: [7] E. B.  Fabes, M.  Jodeit and N. M.  Riviére: Potential techniques for boundary value problems in $C^1$  domains.Acta Math. 141 (1978), 165–186. MR 0501367, 10.1007/BF02545747
Reference: [8] N. V.  Grachev and V. G.  Maz’ya: On the Fredholm radius for operators of the double layer potential type on piecewise smooth boundaries.Vest. Leningrad. Univ. 19 (1986), 60–64. MR 0880678
Reference: [9] N. V.  Grachev and V. G.  Maz’ya: Invertibility of Boundary Integral Operators of Elasticity on Surfaces with Conic Points.Report LiTH-MAT-R-91-50, Linköping Univ., Sweden.
Reference: [10] N. V.  Grachev and V. G.  Maz’ya: Solvability of a Boundary Integral Equation on a Polyhedron.Report LiTH-MAT-R-91-50, Linköping Univ., Sweden.
Reference: [11] N. V.  Grachev and V. G.  Maz’ya: Estimates for Kernels of the Inverse Operators of the Integral Equations of Elasticity on Surfaces with Conic Points.Report LiTH-MAT-R-91-06. Linköping Univ., Sweden.
Reference: [12] H.  Heuser: Funktionalanalysis.Teubner, Stuttgart, 1975. Zbl 0309.47001, MR 0482021
Reference: [13] V.  Kordula, V.  Müller and V.  Rakočević: On the semi-Browder spectrum.Studia Math. 123 (1997), 1–13. MR 1438302
Reference: [14] J.  Köhn and M.  Sieveking: Zum Cauchyschen und Dirichletschen Problem.Math. Ann. 177 (1968), 133–142. MR 0227445, 10.1007/BF01350789
Reference: [15] J.  Král: Integral Operators in Potential Theory. Lecture Notes in Mathematics 823.Springer-Verlag, Berlin, 1980. MR 0590244
Reference: [16] J. Král: The Fredholm method in potential theory.Trans. Amer. Math. Soc. 125 (1966), 511–547. MR 0209503, 10.2307/1994580
Reference: [17] J.  Král: Problème de Neumann faible avec condition frontière dans  $L^1$.Séminaire de Théorie du Potentiel (Université Paris VI) No.  9, Lecture Notes in Mathematics Vol.  1393, Springer-Verlag, 1989, pp. 145–160.
Reference: [18] J. Král and W. L.  Wendland: Some examples concerning applicability of the Fredholm-Radon method in potential theory.Appl. Math. 31 (1986), 293–308. MR 0854323
Reference: [19] N. L.  Landkof: Fundamentals of Modern Potential Theory.Izdat. Nauka, Moscow, 1966. (Russian) MR 0214795
Reference: [20] D.  Medková: The third boundary value problem in potential theory for domains with a piecewise smooth boundary.Czechoslovak Math.  J. 47(122) (1997), 651–679. MR 1479311, 10.1023/A:1022818618177
Reference: [21] D.  Medková: Solution of the Robin problem for the Laplace equation.Appl. Math. 43 (1998), 133–155. MR 1609158, 10.1023/A:1023267018214
Reference: [22] D.  Medková: Solution of the Neumann problem for the Laplace equation.Czechoslovak Math.  J. 48(123) (1998), 768–784. MR 1658269, 10.1023/A:1022447908645
Reference: [23] I.  Netuka: Fredholm radius of a potential theoretic operator for convex sets.Čas. pěst. mat. 100 (1975), 374–383. Zbl 0314.31006, MR 0419794
Reference: [24] I.  Netuka: Generalized Robin problem in potential theory.Czechoslovak Math.  J. 22(97) (1972), 312-324. Zbl 0241.31008, MR 0294673
Reference: [25] I.  Netuka: An operator connected with the third boundary value problem in potential theory.Czechoslovak Math.  J. 22(97) (1972), 462–489. Zbl 0241.31009, MR 0316733
Reference: [26] I.  Netuka: The third boundary value problem in potential theory.Czechoslovak Math.  J. 22(97) (1972), 554–580. Zbl 0242.31007, MR 0313528
Reference: [27] I.  Netuka: Continuity and maximum principle for potentials of signed measures.Czechoslovak Math.  J. 25(100) (1975), 309–316. Zbl 0309.31019, MR 0382690
Reference: [28] A.  Rathsfeld: The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron. The panel method.Appl. Anal. 45 (1992), 1–4, 135–177. MR 1293594, 10.1080/00036819208840093
Reference: [29] A.  Rathsfeld: The invertibility of the double layer potential operator in the space of continuous functions defined over a polyhedron. The panel method. Erratum.Appl. Anal. 56 (1995), 109–115. Zbl 0921.31004, MR 1378015, 10.1080/00036819508840313
Reference: [30] Ch. G.  Simader: The weak Dirichlet and Neumann problem for the Laplacian in  $L^q$ for bounded and exterior domains. Applications.Nonlinear analysis, function spaces and applications, Vol.  4, Proc. Spring School, Roudnice nad Labem (Czech, 1990), Teubner-Texte Math.  119, 1990, pp. 180–223. MR 1151436
Reference: [31] Ch. G.  Simader and H.  Sohr: The Dirichlet problem for the Laplacian in bounded and unbounded domains.Pitman Research Notes in Mathematics Series  360, Addison Wesley Longman Inc., 1996. MR 1454361
Reference: [32] M.  Schechter: Principles of Functional Analysis.Academic Press, 1973. MR 0445263
Reference: [33] W. P.  Ziemer: Weakly Differentiable Functions.Springer Verlag, 1989. Zbl 0692.46022, MR 1014685
.

Files

Files Size Format View
CzechMathJ_53-2003-2_13.pdf 413.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo