Previous |  Up |  Next

Article

Title: Dual convergences of iteration processes for nonexpansive mappings in Banach spaces (English)
Author: Jung, Jong Soo
Author: Sahu, Daya Ram
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 2
Year: 2003
Pages: 397-404
Summary lang: English
.
Category: math
.
Summary: In this paper we establish a dual weak convergence theorem for the Ishikawa iteration process for nonexpansive mappings in a reflexive and strictly convex Banach space with a uniformly Gâteaux differentiable norm, and then apply this result to study the problem of the weak convergence of the iteration process. (English)
Keyword: Banach limit
Keyword: dual convergence theorem
Keyword: duality mapping
Keyword: Ishikawa iteration process
Keyword: nonexpansive mapping
MSC: 47H09
MSC: 47H10
MSC: 47J25
idZBL: Zbl 1030.47037
idMR: MR1983460
.
Date available: 2009-09-24T11:02:38Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127808
.
Reference: [1] R. E.  Bruck and S. Reich: Accretive operators, Banach limits and dual ergodic theorems.Bull. Acad. Polon. Sci. 29 (1981), 585–589. MR 0654218
Reference: [2] L. Deng: Convergence of the Ishikawa iteration process for nonexpansive mappings.J.  Math. Anal. Appl. 199 (1996), 769–775. Zbl 0856.47041, MR 1386604
Reference: [3] K.  Goebel and S.  Reich: Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings.Marcel Dekker, New York and Basel, 1984. MR 0744194
Reference: [4] S.  Ishikawa: Fixed point by a new iteration method.Proc. Amer. Math. Soc. 44 (1974), 147–150. MR 0336469, 10.1090/S0002-9939-1974-0336469-5
Reference: [5] K. S.  Ha and J.  S.  Jung: Strong convergence theorems for accretive operators in Banach spaces.J.  Math. Anal. Appl. 104 (1990), 330–339. MR 1050208, 10.1016/0022-247X(90)90351-F
Reference: [6] G.  G.  Lorentz: A contribution to the theory of divergent series.Acta Math. 80 (1948), 167–190. MR 0027868, 10.1007/BF02393648
Reference: [7] W. R.  Mann: Mean value methods in iteration.Proc. Amer. Math. Soc. 4 (1953), 506–510. Zbl 0050.11603, MR 0054846, 10.1090/S0002-9939-1953-0054846-3
Reference: [8] S.  Reich: Weak convergence theorem for nonexpansive mappings in Banach spaces.J.  Math. Anal. Appl. 67 (1979), 274–276. MR 0528688, 10.1016/0022-247X(79)90024-6
Reference: [9] S.  Reich: Product formulas, nonlinear semigroups and accretive operators.J.  Functional Analysis 36 (1980), 147–168. Zbl 0437.47048, MR 0569251, 10.1016/0022-1236(80)90097-X
Reference: [10] K.  K.  Tan and H.  K.  Xu: Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process.J.  Math. Anal. Appl. 178 (1993), 301–308. MR 1238879, 10.1006/jmaa.1993.1309
.

Files

Files Size Format View
CzechMathJ_53-2003-2_14.pdf 295.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo