Article
Keywords:
Banach limit; dual convergence theorem; duality mapping; Ishikawa iteration process; nonexpansive mapping
Summary:
In this paper we establish a dual weak convergence theorem for the Ishikawa iteration process for nonexpansive mappings in a reflexive and strictly convex Banach space with a uniformly Gâteaux differentiable norm, and then apply this result to study the problem of the weak convergence of the iteration process.
References:
                        
[1] R. E.  Bruck and S. Reich: 
Accretive operators, Banach limits and dual ergodic theorems. Bull. Acad. Polon. Sci. 29 (1981), 585–589. 
MR 0654218[2] L. Deng: 
Convergence of the Ishikawa iteration process for nonexpansive mappings. J.  Math. Anal. Appl. 199 (1996), 769–775. 
MR 1386604 | 
Zbl 0856.47041[3] K.  Goebel and S.  Reich: 
Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings. Marcel Dekker, New York and Basel, 1984. 
MR 0744194[10] K.  K.  Tan and H.  K.  Xu: 
Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process. J.  Math. Anal. Appl. 178 (1993), 301–308. 
DOI 10.1006/jmaa.1993.1309 | 
MR 1238879