Previous |  Up |  Next

Article

Title: The omega limit sets of subsets in a metric space (English)
Author: Ding, Changming
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 1
Year: 2005
Pages: 87-96
Summary lang: English
.
Category: math
.
Summary: In this paper, we discuss the properties of limit sets of subsets and attractors in a compact metric space. It is shown that the $\omega $-limit set $\omega (Y)$ of $Y$ is the limit point of the sequence $\lbrace (\mathop {\mathrm Cl}Y)\cdot [i,\infty )\rbrace _{i=1}^{\infty }$ in $2^X$ and also a quasi-attractor is the limit point of attractors with respect to the Hausdorff metric. It is shown that if a component of an attractor is not an attractor, then it must be a real quasi-attractor. (English)
Keyword: limit set of a set
Keyword: attractor
Keyword: quasi-attractor
Keyword: hyperspace
MSC: 34C35
MSC: 37B25
MSC: 37B30
MSC: 37C10
MSC: 54H20
idZBL: Zbl 1081.37001
idMR: MR2121657
.
Date available: 2009-09-24T11:21:00Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127960
.
Reference: [1] N. P. Bhatia and G. P. Szegö: Stability Theory of Dynamical Systems.Springer-Verlag, Berlin, 1970. MR 0289890
Reference: [2] G. Butler and P. Waltmann: Persistence in dynamical systems.J.  Differential Equations 63 (1986), 255–263. MR 0848269, 10.1016/0022-0396(86)90049-5
Reference: [3] C. C. Conley: The gradient structure of a flow: I.Ergod. Th. & Dynam. Sys. $8^*$ (1988), 11–26. Zbl 0687.58033, MR 0967626, 10.1017/S0143385700009305
Reference: [4] C. C. Conley: Isolated invariant sets and Morse index.Conf. Board Math. Sci., No  38, Amer. Math. Sci., Providence, 1978. MR 0511133
Reference: [5] C. C. Conley: Some abstract properties of the set of invariant sets of a flow.Illinois J.  Math. 16 (1972), 663–668. Zbl 0241.54037, MR 0315686, 10.1215/ijm/1256065549
Reference: [6] J. K. Hale and P. Waltmann: Persistence in infinite-dimensional systems.SIAM J.  Math. Anal. 20 (1989), 388–395. MR 0982666, 10.1137/0520025
Reference: [7] R. Moeckel: Some comments on “The gradient structure of a flow: I”.vol. $8^*$, Ergod. Th. & Dynam. Sys., 1988. MR 0967626
Reference: [8] S. B. Nadler, Jr.: Continuum Theory: An Introduction.Marcel Dekker, New York-Basel-Hong Kong, 1992. Zbl 0757.54009, MR 1192552
Reference: [9] T. Huang: Some global properties in dynamical systems.PhD. thesis, Inst. of Math., Academia Sinica, , 1998.
.

Files

Files Size Format View
CzechMathJ_55-2005-1_5.pdf 338.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo