Title:
|
The omega limit sets of subsets in a metric space (English) |
Author:
|
Ding, Changming |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
55 |
Issue:
|
1 |
Year:
|
2005 |
Pages:
|
87-96 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we discuss the properties of limit sets of subsets and attractors in a compact metric space. It is shown that the $\omega $-limit set $\omega (Y)$ of $Y$ is the limit point of the sequence $\lbrace (\mathop {\mathrm Cl}Y)\cdot [i,\infty )\rbrace _{i=1}^{\infty }$ in $2^X$ and also a quasi-attractor is the limit point of attractors with respect to the Hausdorff metric. It is shown that if a component of an attractor is not an attractor, then it must be a real quasi-attractor. (English) |
Keyword:
|
limit set of a set |
Keyword:
|
attractor |
Keyword:
|
quasi-attractor |
Keyword:
|
hyperspace |
MSC:
|
34C35 |
MSC:
|
37B25 |
MSC:
|
37B30 |
MSC:
|
37C10 |
MSC:
|
54H20 |
idZBL:
|
Zbl 1081.37001 |
idMR:
|
MR2121657 |
. |
Date available:
|
2009-09-24T11:21:00Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127960 |
. |
Reference:
|
[1] N. P. Bhatia and G. P. Szegö: Stability Theory of Dynamical Systems.Springer-Verlag, Berlin, 1970. MR 0289890 |
Reference:
|
[2] G. Butler and P. Waltmann: Persistence in dynamical systems.J. Differential Equations 63 (1986), 255–263. MR 0848269, 10.1016/0022-0396(86)90049-5 |
Reference:
|
[3] C. C. Conley: The gradient structure of a flow: I.Ergod. Th. & Dynam. Sys. $8^*$ (1988), 11–26. Zbl 0687.58033, MR 0967626, 10.1017/S0143385700009305 |
Reference:
|
[4] C. C. Conley: Isolated invariant sets and Morse index.Conf. Board Math. Sci., No 38, Amer. Math. Sci., Providence, 1978. MR 0511133 |
Reference:
|
[5] C. C. Conley: Some abstract properties of the set of invariant sets of a flow.Illinois J. Math. 16 (1972), 663–668. Zbl 0241.54037, MR 0315686, 10.1215/ijm/1256065549 |
Reference:
|
[6] J. K. Hale and P. Waltmann: Persistence in infinite-dimensional systems.SIAM J. Math. Anal. 20 (1989), 388–395. MR 0982666, 10.1137/0520025 |
Reference:
|
[7] R. Moeckel: Some comments on “The gradient structure of a flow: I”.vol. $8^*$, Ergod. Th. & Dynam. Sys., 1988. MR 0967626 |
Reference:
|
[8] S. B. Nadler, Jr.: Continuum Theory: An Introduction.Marcel Dekker, New York-Basel-Hong Kong, 1992. Zbl 0757.54009, MR 1192552 |
Reference:
|
[9] T. Huang: Some global properties in dynamical systems.PhD. thesis, Inst. of Math., Academia Sinica, , 1998. |
. |