Previous |  Up |  Next

Article

Title: Graphic sequences of trees and a problem of Frobenius (English)
Author: Gupta, Gautam
Author: Joshi, Puneet
Author: Tripathi, Amitabha
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 1
Year: 2007
Pages: 49-52
Summary lang: English
.
Category: math
.
Summary: We give a necessary and sufficient condition for the existence of a tree of order $n$ with a given degree set. We relate this to a well-known linear Diophantine problem of Frobenius. (English)
Keyword: graphic
Keyword: tree-graphic
MSC: 05C07
idZBL: Zbl 1174.05023
idMR: MR2309947
.
Date available: 2009-09-24T11:43:39Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128153
.
Reference: [1] T. S.  Ahuja, A.  Tripathi: On the order of a graph with a given degree set.The Journal of Combinatorial Mathematics and Combinatorial Computing 57 (2006), 157–162. MR 2226692
Reference: [2] P.  Erdös, T.  Gallai: Graphs with prescribed degrees of vertices.Mat. Lapok 11 (1960), 264–274. (Hungarian)
Reference: [3] R. K.  Guy: Unsolved Problems in Number Theory. Unsolved Problems in Intuitive Mathematics, Volume  I, Third Edition.Springer-Verlag, New York, 2004. MR 2076335
Reference: [4] S. L.  Hakimi: On the realizability of a set of integers as degrees of the vertices of a graph.J.  SIAM Appl. Math. 10 (1962), 496–506. MR 0148049, 10.1137/0110037
Reference: [5] V.  Havel: A remark on the existence of finite graphs.Čas. Pěst. Mat. 80 (1955), 477–480. (Czech)
Reference: [6] S. F.  Kapoor, A. D.  Polimeni, and C. E.  Wall: Degree sets for graphs.Fund. Math. 95 (1977), 189–194. MR 0480200, 10.4064/fm-95-3-189-194
.

Files

Files Size Format View
CzechMathJ_57-2007-1_4.pdf 277.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo