Title:
|
Intertwining numbers; the $n$-rowed shapes (English) |
Author:
|
Ko, Hyoung J. |
Author:
|
Lee, Kyoung J. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
57 |
Issue:
|
1 |
Year:
|
2007 |
Pages:
|
53-65 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A fairly old problem in modular representation theory is to determine the vanishing behavior of the $\mathop {\mathrm Hom}\nolimits $ groups and higher $\mathop {\mathrm Ext}\nolimits $ groups of Weyl modules and to compute the dimension of the $\mathbb{Z} /(p)$-vector space $\mathop {\mathrm Hom}\nolimits _{\bar{A}_r}(\bar{K}_\lambda ,\bar{K}_\mu )$ for any partitions $\lambda $, $\mu $ of $r$, which is the intertwining number. K. Akin, D. A. Buchsbaum, and D. Flores solved this problem in the cases of partitions of length two and three. In this paper, we describe the vanishing behavior of the groups $\mathop {\mathrm Hom}\nolimits _{\bar{A}_r}(\bar{K}_\lambda ,\bar{K}_\mu )$ and provide a new formula for the intertwining number for any $n$-rowed partition. (English) |
Keyword:
|
representation theory |
Keyword:
|
intertwining number |
Keyword:
|
Weyl module |
Keyword:
|
$\mathop {\mathrm Ext}\nolimits $ group |
Keyword:
|
partition |
MSC:
|
05E15 |
MSC:
|
13D02 |
MSC:
|
20C20 |
MSC:
|
20G05 |
MSC:
|
20G10 |
MSC:
|
20G15 |
idZBL:
|
Zbl 1166.20036 |
idMR:
|
MR2309948 |
. |
Date available:
|
2009-09-24T11:43:46Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128154 |
. |
Reference:
|
[1] K. Akin, D. A. Buchsbaum: Characteristic-free representation theory of the general linear group.Adv. Math. 58 (1985), 149–200. MR 0814749, 10.1016/0001-8708(85)90115-X |
Reference:
|
[2] K. Akin, D. A. Buchsbaum: Characteristic-free representation theory of the general linear group, II. Homological considerations.Adv. Math. 72 (1988), 171–210. MR 0972760, 10.1016/0001-8708(88)90027-8 |
Reference:
|
[3] K. Akin, D. A. Buchsbaum: Representations, resolutions and intertwining numbers.In: Communications in Algebra, Springer-Verlag, Berlin-New York, 1989, pp. 1–19. MR 1015510 |
Reference:
|
[4] K. Akin, D. A. Buchsbaum: Resolutions and intertwining numbers.In: Proceedings of a Micro-program, June 15–July 2, 1987, Springer-Verlag, New York. |
Reference:
|
[5] K. Akin, D. A. Buchsbaum, and J. Weyman: Schur functors and Schur complexes.Adv. Math. 44 (1982), 207–278. MR 0658729, 10.1016/0001-8708(82)90039-1 |
Reference:
|
[6] K. Akin, J. Weyman: The irreducible tensor representations of $gl(m\mathrel | 1)$ and their generic homology.J. Algebra 230 (2000), 5–23. MR 1774756, 10.1006/jabr.1999.7986 |
Reference:
|
[7] D. A. Buchsbaum: Aspects of characteristic-free representation theory of ${\mathrm GL}_n$, and some application to intertwining numbers.Acta Applicandae Mathematicae 21 (1990), 247–261. MR 1085780, 10.1007/BF00053299 |
Reference:
|
[8] D. A. Buchsbaum, D. Flores de Chela: Intertwining numbers; the three-rowed case.J. Algebra 183 (1996), 605–635. MR 1399042, 10.1006/jabr.1996.0235 |
Reference:
|
[9] M. Clausen: Letter place algebras and a characteristic-free approach to the representation theory of the general linear and symmetric groups.Adv. Math. 33 (1979), 161–191. Zbl 0425.20011, MR 0544848, 10.1016/S0001-8708(79)80004-3 |
Reference:
|
[10] R. W. Carter, G. Lusztig: On the modular representation of the general linear and symmetric groups.Math. Z. 136 (1974), . MR 0354887 |
Reference:
|
[11] R. W. Cater, J. Payne: On homomorphism between Weyl modules and Specht modules.Math. Proc. Cambridge Philos. Soc. 87 (1980), . MR 0556922 |
Reference:
|
[12] D. Flores de Chela: On intertwining numbers.J. Algebra 171 (1995), 631–653. MR 1315916, 10.1006/jabr.1995.1031 |
Reference:
|
[13] W. Fulton, J. Harris: Representation Theory. A First Course.Springer-Verlag, New York, 1991. MR 1153249 |
Reference:
|
[14] D. Flores de Chela, M. A. Mendez: Equivariant representations of the symmetric groups.Adv. Math. 97 (1993), 191–230. MR 1201843, 10.1006/aima.1993.1006 |
Reference:
|
[15] J. A. Green: Polynomial Representation of ${\mathrm GL}_n$. Lectures Notes in Mathematics, No. 830.Springer-Verlag, Berlin, 1980. |
Reference:
|
[16] N. Jacobson: Basic Algebra II.W. H. Freeman and Company, , 1980. Zbl 0441.16001, MR 0571884 |
Reference:
|
[17] U. Kulkarni: Skew Weyl modules for ${\mathop {\mathrm GL}\nolimits }_n$ and degree reduction for Schur algebras.J. Algebra 224 (2000), 248–262. MR 1739579, 10.1006/jabr.1999.8042 |
Reference:
|
[18] P. Magyar: Borel-Weil theorem for configuration varieties and Schur modules.Adv. Math. 134 (1998), 328–366. Zbl 0911.14024, MR 1617793, 10.1006/aima.1997.1700 |
Reference:
|
[19] G. Murphy, M. H. Peel: Representation of symmetric groups by bad shapes.J. Algebra 116 (1988), 143–154. MR 0944151, 10.1016/0021-8693(88)90197-4 |
Reference:
|
[20] P. Martin, D. Woodcock: The partition algebras and a new deformation of the Schur algebras.J. Algebra 203 (1998), 91–124. MR 1620713, 10.1006/jabr.1997.7164 |
Reference:
|
[21] V. Reiner, M. Shimozono: Specht series for column-convex diagrams.J. Algebra 174 (1995), 489–522. MR 1334221, 10.1006/jabr.1995.1136 |
Reference:
|
[22] M. Teresa, F. Oliveira-Martins: On homomorphisms between Weyl modules for hook partitions.Linear Multilinear Algebra 23 (1988), 305–323. MR 1007014, 10.1080/03081088808817884 |
. |