Previous |  Up |  Next

Article

Title: Intertwining numbers; the $n$-rowed shapes (English)
Author: Ko, Hyoung J.
Author: Lee, Kyoung J.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 1
Year: 2007
Pages: 53-65
Summary lang: English
.
Category: math
.
Summary: A fairly old problem in modular representation theory is to determine the vanishing behavior of the $\mathop {\mathrm Hom}\nolimits $ groups and higher $\mathop {\mathrm Ext}\nolimits $ groups of Weyl modules and to compute the dimension of the $\mathbb{Z} /(p)$-vector space $\mathop {\mathrm Hom}\nolimits _{\bar{A}_r}(\bar{K}_\lambda ,\bar{K}_\mu )$ for any partitions $\lambda $, $\mu $ of $r$, which is the intertwining number. K. Akin, D. A. Buchsbaum, and D. Flores solved this problem in the cases of partitions of length two and three. In this paper, we describe the vanishing behavior of the groups $\mathop {\mathrm Hom}\nolimits _{\bar{A}_r}(\bar{K}_\lambda ,\bar{K}_\mu )$ and provide a new formula for the intertwining number for any $n$-rowed partition. (English)
Keyword: representation theory
Keyword: intertwining number
Keyword: Weyl module
Keyword: $\mathop {\mathrm Ext}\nolimits $ group
Keyword: partition
MSC: 05E15
MSC: 13D02
MSC: 20C20
MSC: 20G05
MSC: 20G10
MSC: 20G15
idZBL: Zbl 1166.20036
idMR: MR2309948
.
Date available: 2009-09-24T11:43:46Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128154
.
Reference: [1] K. Akin, D. A. Buchsbaum: Characteristic-free representation theory of the general linear group.Adv. Math. 58 (1985), 149–200. MR 0814749, 10.1016/0001-8708(85)90115-X
Reference: [2] K. Akin, D. A. Buchsbaum: Characteristic-free representation theory of the general linear group,  II. Homological considerations.Adv. Math. 72 (1988), 171–210. MR 0972760, 10.1016/0001-8708(88)90027-8
Reference: [3] K. Akin, D. A. Buchsbaum: Representations, resolutions and intertwining numbers.In: Communications in Algebra, Springer-Verlag, Berlin-New York, 1989, pp. 1–19. MR 1015510
Reference: [4] K. Akin, D. A. Buchsbaum: Resolutions and intertwining numbers.In: Proceedings of a Micro-program, June 15–July 2, 1987, Springer-Verlag, New York.
Reference: [5] K. Akin, D. A. Buchsbaum, and J. Weyman: Schur functors and Schur complexes.Adv. Math. 44 (1982), 207–278. MR 0658729, 10.1016/0001-8708(82)90039-1
Reference: [6] K. Akin, J. Weyman: The irreducible tensor representations of $gl(m\mathrel | 1)$ and  their  generic homology.J.  Algebra 230 (2000), 5–23. MR 1774756, 10.1006/jabr.1999.7986
Reference: [7] D. A. Buchsbaum: Aspects of characteristic-free representation theory of ${\mathrm GL}_n$, and some application to intertwining numbers.Acta Applicandae Mathematicae 21 (1990), 247–261. MR 1085780, 10.1007/BF00053299
Reference: [8] D. A. Buchsbaum, D. Flores de Chela: Intertwining numbers; the three-rowed case.J.  Algebra 183 (1996), 605–635. MR 1399042, 10.1006/jabr.1996.0235
Reference: [9] M. Clausen: Letter place algebras and a characteristic-free approach to the representation theory of the general linear and symmetric groups.Adv. Math. 33 (1979), 161–191. Zbl 0425.20011, MR 0544848, 10.1016/S0001-8708(79)80004-3
Reference: [10] R. W. Carter, G. Lusztig: On the modular representation of the general linear and symmetric groups.Math.  Z. 136 (1974), . MR 0354887
Reference: [11] R. W. Cater, J. Payne: On homomorphism between Weyl modules and Specht modules.Math. Proc. Cambridge Philos. Soc. 87 (1980), . MR 0556922
Reference: [12] D. Flores de Chela: On intertwining numbers.J.  Algebra 171 (1995), 631–653. MR 1315916, 10.1006/jabr.1995.1031
Reference: [13] W. Fulton, J. Harris: Representation Theory. A First Course.Springer-Verlag, New York, 1991. MR 1153249
Reference: [14] D. Flores de Chela, M. A. Mendez: Equivariant representations of the symmetric groups.Adv. Math. 97 (1993), 191–230. MR 1201843, 10.1006/aima.1993.1006
Reference: [15] J. A. Green: Polynomial Representation of  ${\mathrm GL}_n$. Lectures Notes in Mathematics, No. 830.Springer-Verlag, Berlin, 1980.
Reference: [16] N. Jacobson: Basic Algebra  II.W. H. Freeman and Company, , 1980. Zbl 0441.16001, MR 0571884
Reference: [17] U. Kulkarni: Skew Weyl modules for  ${\mathop {\mathrm GL}\nolimits }_n$ and degree reduction for Schur algebras.J.  Algebra 224 (2000), 248–262. MR 1739579, 10.1006/jabr.1999.8042
Reference: [18] P. Magyar: Borel-Weil theorem for configuration varieties and Schur modules.Adv. Math. 134 (1998), 328–366. Zbl 0911.14024, MR 1617793, 10.1006/aima.1997.1700
Reference: [19] G. Murphy, M. H. Peel: Representation of symmetric groups by bad shapes.J.  Algebra 116 (1988), 143–154. MR 0944151, 10.1016/0021-8693(88)90197-4
Reference: [20] P. Martin, D. Woodcock: The partition algebras and a new deformation of the Schur algebras.J.  Algebra 203 (1998), 91–124. MR 1620713, 10.1006/jabr.1997.7164
Reference: [21] V. Reiner, M. Shimozono: Specht series for column-convex diagrams.J.  Algebra 174 (1995), 489–522. MR 1334221, 10.1006/jabr.1995.1136
Reference: [22] M. Teresa, F. Oliveira-Martins: On homomorphisms between Weyl modules for hook partitions.Linear Multilinear Algebra 23 (1988), 305–323. MR 1007014, 10.1080/03081088808817884
.

Files

Files Size Format View
CzechMathJ_57-2007-1_5.pdf 358.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo