Previous |  Up |  Next

Article

Title: Commutators of singular integrals on spaces of homogeneous type (English)
Author: Pradolini, Gladis
Author: Salinas, Oscar
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 1
Year: 2007
Pages: 75-93
Summary lang: English
.
Category: math
.
Summary: In this work we prove some sharp weighted inequalities on spaces of homogeneous type for the higher order commutators of singular integrals introduced by R. Coifman, R. Rochberg and G. Weiss in Factorization theorems for Hardy spaces in several variables, Ann. Math. 103 (1976), 611–635. As a corollary, we obtain that these operators are bounded on $L^{p}(w)$ when $w$ belongs to the Muckenhoupt’s class $A_{p}$, $p>1$. In addition, as an important tool in order to get our main result, we prove a weighted Fefferman-Stein type inequality on spaces of homogeneous type, which we have not found previously in the literature. (English)
Keyword: commutators
Keyword: spaces of homogeneous type
Keyword: weights
MSC: 42B25
idZBL: Zbl 1174.42322
idMR: MR2309950
.
Date available: 2009-09-24T11:44:01Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128156
.
Reference: [1] H.  Aimar: Singular integrals and approximate identities on spaces of homogeneous type.Trans. Am. Math. Soc. 292 (1985), 135–153. Zbl 0578.42016, MR 0805957, 10.1090/S0002-9947-1985-0805957-9
Reference: [2] H.  Aimar: Rearrangement and continuity properties of  ${\mathrm BMO}(\phi )$ functions on spaces of homogeneous type.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV.  Ser. 18 (1991), 353–362. MR 1145315
Reference: [3] M.  Bramanti, M. C.  Cerutti: Commutators of singular integrals and fractional integrals on homogeneous spaces.In: Harmonic Analysis and Operator Theory. Proceedings of the conference in honor of Mischa Cotlar, January 3–8, 1994, Caracas, Venezuela, S. A. M. Marcantognini et al. (eds.), Am. Math. Soc., Providence. MR 1347007
Reference: [4] M.  Bramanti, M. C.  Cerutti: Commutators of singular integrals on homogeneous spaces.Boll. Unione Mat. Ital., VII.  Ser. B 10 (1996), 843–883. MR 1430157
Reference: [5] R.  Coifman: Distribution function inequalities for singular integrals.Proc. Natl. Acad. Sci. USA 69 (1972), 2838–2839. Zbl 0243.44006, MR 0303226, 10.1073/pnas.69.10.2838
Reference: [6] R.  Coifman, G.  Weiss: Analyse harmonique non-commutative sur certains espaces homogènes. Lecture Notes in Mathematics, Vol.  242.Springer-Verlag, Berlin-New York, 1971. MR 0499948, 10.1007/BFb0058946
Reference: [7] R.  Coifman, R.  Rochberg, and G.  Weiss: Factorization theorems for Hardy spaces in several variables.Ann. Math. 103 (1976), 611–635. MR 0412721, 10.2307/1970954
Reference: [8] F.  Chiarenza, M.  Frasca, and P.  Longo: Interior $W^{2,p}$  estimates for non divergence elliptic equations with discontinuous coefficients.Ric. Mat. 40 (1991), 149–168. MR 1191890
Reference: [9] F.  Chiarenza, M.  Frasca, and P. Longo: $W^{2,p}$-solvability of the Dirichlet problem for non divergence elliptic equations with VMO coefficients.Trans. Am. Math. Soc. 336 (1993), 841–853. MR 1088476
Reference: [10] G.  Di Fazio, M. A.  Ragusa: Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients.J.  Funct. Anal. 112 (1993), 241–256. MR 1213138, 10.1006/jfan.1993.1032
Reference: [11] B.  Franchi, C.  E.  Gutiérrez, and R.  Wheeden: Weighted Sobolev-Poincaré inequalities for Grushin type operators.Comm. Partial Differential Equations 19 (1994), 523–604. MR 1265808, 10.1080/03605309408821025
Reference: [12] C.  Fefferman, E. M.  Stein: Some maximal inequalities.Amer. J.  Math. 93 (1971), 107–115. MR 0284802, 10.2307/2373450
Reference: [13] J. L.  Journé: Calderón Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integral of Calderón. Lecture Notes in Mathematics Vol.  994.Springer-Verlag, Berlin-New York, 1983. MR 0706075
Reference: [14] R.  Macías, C. Segovia: Lipschitz functions on spaces of homogeneous type.Adv. Math. 33 (1979), 257–270. MR 0546295, 10.1016/0001-8708(79)90012-4
Reference: [15] R.  Macías, C.  Segovia: Singular integrals on generalized Lipschitz and Hardy spaces.Studia Math. 65 (1979), 55–75. MR 0554541, 10.4064/sm-65-1-55-75
Reference: [16] R.  Macías, C.  Segovia: A well behaved quasi-distance for spaces of homogeneous type.Trabajos de Matemática, Serie  I 32 (1981).
Reference: [17] R.  O’Neil: Fractional integration in Orlicz spaces.Trans. Amer. Math. Soc. 115 (1965), 300–328. MR 0194881, 10.1090/S0002-9947-1965-0194881-0
Reference: [18] C.  Pérez: Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function.J.  Fourier Anal. Appl. 3 (1997), 743–756. MR 1481632, 10.1007/BF02648265
Reference: [19] C.  Pérez: Endpoint estimates for commutators of singular integral operators.J.  Funct. Anal. 128 (1995), 163–185. MR 1317714, 10.1006/jfan.1995.1027
Reference: [20] C.  Pérez, R.  Wheeden: Uncertainty principle estimates for vector fields.J.  Funct. Anal. 181 (2001), 146–188. MR 1818113, 10.1006/jfan.2000.3711
Reference: [21] G.  Pradolini, O.  Salinas: Maximal operators on spaces of homogeneous type.Proc. Amer. Math. Soc. 132 (2003), 435–441. MR 2022366, 10.1090/S0002-9939-03-07079-5
Reference: [22] C. Ríos: The $L^{p}$ Dirichlet problems and non divergence harmonic measure.Trans. Amer. Math. Soc. 355 (2003), 665–687. MR 1932720, 10.1090/S0002-9947-02-03145-8
Reference: [23] M.  Rao, Z.  Ren: Theory of Orlicz spaces.Marcel Dekker, New York, 1991. MR 1113700
Reference: [24] R.  Rochberg, G.  Weiss: Derivatives of analytic families of Banach spaces.Ann. Math. 118 (1983), 315–347. MR 0717826, 10.2307/2007031
Reference: [25] M.  Wilson: Weighted norm inequalities for the continuous square function.Trans. Amer. Math. Soc. 314 (1989), 661–692. MR 0972707, 10.1090/S0002-9947-1989-0972707-9
.

Files

Files Size Format View
CzechMathJ_57-2007-1_7.pdf 393.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo