Previous |  Up |  Next

Article

Title: Bernstein’s analyticity theorem for quantum differences (English)
Author: Sjödin, Tord
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 1
Year: 2007
Pages: 67-73
Summary lang: English
.
Category: math
.
Summary: We consider real valued functions $f$ defined on a subinterval $I$ of the positive real axis and prove that if all of $f$’s quantum differences are nonnegative then $f$ has a power series representation on $I$. Further, if the quantum differences have fixed sign on $I$ then $f$ is analytic on $I$. (English)
Keyword: difference
Keyword: quantum difference
Keyword: quantum derivative
Keyword: power series
MSC: 26A24
MSC: 26A48
MSC: 26E05
idZBL: Zbl 1174.26312
idMR: MR2309949
.
Date available: 2009-09-24T11:43:53Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128155
.
Reference: [1] S. G. Bernstein: Leçons sur les propriété extrémales et la meilleure approximation des functions analytiques d’une variable réelle.Gautier-Villars, Paris, 1926. (French)
Reference: [2] S. G.  Bernstein: Sur les fonctions absolument monotones.Acta Math. 52 (1928), 1–66. 10.1007/BF02592679
Reference: [3] G.  Gasper, M.  Rahman: Basic hypergeometric series.Encyclopaedia of Mathematics and its Applications 34, Cambridge University Press, Cambridge, 1990. MR 1052153
Reference: [4] J. H. B.  Kemperman: On the regularity of generalized convex functions.Trans. Amer. Math. Soc. 135 (1969), 69–93. MR 0232900, 10.1090/S0002-9947-1969-0265531-3
Reference: [5] V.  Kac, P.  Cheung: Quantum Calculus.Springer-Verlag, New York, 2002. MR 1865777
Reference: [6] J. M.  Ash, S. Catoiu, and R.  Rios-Collantes-de-Teran: On the $n$th quantum derivative.J.  London Math. Soc. 66 (2002), 114–130. MR 1911224, 10.1112/S0024610702003198
Reference: [7] T.  Sjödin: Bernstein’s analyticity theorem for binary differences.Math. Ann. 315 (1999), 251–261. MR 1721798, 10.1007/s002080050366
Reference: [8] T.  Sjödin: On generalized differences and Bernstein’s analyticity theorem.Research report No  9, Department of Mathematics, University of Umeå, Umeå, 2003.
.

Files

Files Size Format View
CzechMathJ_57-2007-1_6.pdf 298.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo