Previous |  Up |  Next

Article

Title: On idempotent modifications of $MV$-algebras (English)
Author: Jakubík, Ján
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 1
Year: 2007
Pages: 243-252
Summary lang: English
.
Category: math
.
Summary: The notion of idempotent modification of an algebra was introduced by Ježek. He proved that the idempotent modification of a group is subdirectly irreducible. For an $MV$-algebra $\mathcal A$ we denote by $\mathcal A^{\prime }, A$ and $\ell (\mathcal A)$ the idempotent modification, the underlying set or the underlying lattice of $\mathcal A$, respectively. In the present paper we prove that if $\mathcal A$ is semisimple and $\ell (\mathcal A)$ is a chain, then $\mathcal A^{\prime }$ is subdirectly irreducible. We deal also with a question of Ježek concerning varieties of algebras. (English)
Keyword: $MV$-algebra
Keyword: idempotent modification
Keyword: subdirect reducibility
MSC: 03G25
MSC: 06D35
idZBL: Zbl 1174.06317
idMR: MR2309963
.
Date available: 2009-09-24T11:45:26Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128169
.
Reference: [1] G. Cattaneo and F. Lombardo: Independent axiomatization of $MV$-algebras.Tatra Mt. Math. Publ. 15 (1998), 227–232. MR 1655091
Reference: [2] C. C. Chang: Algebraic analysis of many valued logics.Trans. Amer. Math. Soc. 88 (1958), 467–490. Zbl 0084.00704, MR 0094302, 10.1090/S0002-9947-1958-0094302-9
Reference: [3] R. Cignoli, I. M. L. D’Ottaviano and D. Mundici: Algebraic Foundation of Many Valued Reasoning.Kluwer Academic Publ., Dordrecht, 2000. MR 1786097
Reference: [4] A. Dvurečenskij and S. Pulmannová: New Trends in Quantum Structure.Kluwer Academic Publ., Dordrecht and Ister, Bratislava, 2000. MR 1861369
Reference: [5] L. Fuchs: Partially Ordered Algebraic Systems.Pergamon Press, Oxford-New York-London-Paris, 1963. Zbl 0137.02001, MR 0171864
Reference: [6] D. Glushankof: Cyclic ordered groups and $MV$-algebras.Czechoslovak Math. J. 43 (1993), 249–263. MR 1211747
Reference: [8] J. Ježek: A note on idempotent modifications of groups.Czechoslovak Math. J. 54 (2004), 229–231. MR 2040234, 10.1023/B:CMAJ.0000027262.04069.10
.

Files

Files Size Format View
CzechMathJ_57-2007-1_20.pdf 318.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo