Previous |  Up |  Next

Article

Title: Honest submodules (English)
Author: Jara, Pascual
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 1
Year: 2007
Pages: 225-241
Summary lang: English
.
Category: math
.
Summary: Lattices of submodules of modules and the operators we can define on these lattices are useful tools in the study of rings and modules and their properties. Here we shall consider some submodule operators defined by sets of left ideals. First we focus our attention on the relationship between properties of a set of ideals and properties of a submodule operator it defines. Our second goal will be to apply these results to the study of the structure of certain classes of rings and modules. In particular some applications to the study and the structure theory of torsion modules are provided. (English)
Keyword: closed submodules
Keyword: honest submodules
Keyword: topological filters
MSC: 16D80
MSC: 16W35
idZBL: Zbl 1164.16003
idMR: MR2309962
.
Date available: 2009-09-24T11:45:20Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128168
.
Reference: [1] A. Abian and D. Rinehart: Honest subgroups of Abelian groups.Rend. Circ. Mat. Palermo, II Ser. 12 (1963), 353–356. MR 0167523, 10.1007/BF02851268
Reference: [2] K. A. Brown and K. R. Goodearl: Lectures on algebraic quantum groups.Advanced Courses in Mathematics—CRM Barcelona, Birkhäuser, Basel, 2002. MR 1898492
Reference: [3] T. H. Fay and S. V. Joubert: Isolated submodules and skew fields.Applied Categorical Structures 8 (2000), 317–326. MR 1785851, 10.1023/A:1008622617846
Reference: [4] L. Fuchs: Abelian Groups.Pergamon Press, Oxford, 1967. MR 0111783
Reference: [5] J. S. Golan: Torsion Theories.Pitman Monographs and Surveys in Pure and Appl. Math., No. 29, Longman Sc. & Tech., Essex, 1986. Zbl 0657.16017, MR 0880019
Reference: [6] K. R. Goodearl: Ring Theory. Nonsingular Rings and Modules.Monographs and Textbooks in Pure and Applied Mathematics, No. 33, Marcel Dekker, Inc., New York-Basel, 1976. Zbl 0336.16001, MR 0429962
Reference: [7] K. R. Goodearl and E. S. Letzter: Prime factor algebras of the coordinate ring of quantum matrices.Proc. Amer. Math. Soc. 121 (1994), 1017–1025. MR 1211579, 10.1090/S0002-9939-1994-1211579-1
Reference: [8] S. V. Joubert and M. J. Schoeman: Superhonesty for modules and Abelian groups.Chinese J. Math. 12 (1984), 87–95. MR 0759798
Reference: [9] S. V. Joubert and M. J. Schoeman: A note on generalized honest subgroups of Abelian groups.Comment. Math. Univ. St. Paul. 36 (1987), 145–148. MR 0919447
.

Files

Files Size Format View
CzechMathJ_57-2007-1_19.pdf 369.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo