[1] J. P. Aubin and H. Frankowska: 
Set-valued Analysis. Birkhäuser, Boston, 1990. 
MR 1048347[2] J. M. Ayerbe Toledano, T. Domínguez Benavides and G. López Acedo: 
Measures of Noncompactness in Metric Fixed Point Theory; Advances and Applications Topics in Metric Fixed Point Theory. Birkhauser-Verlag, Basel 99, 1997. 
MR 1483889[3] K. Deimling: 
Nonlinear Functional Analysis. Springer-Verlag, Berlin, 1974. 
MR 0787404[4] T. Domínguez Benavides and P. Lorenzo Ramírez: 
Fixed point theorem for multivalued nonexpansive mapping without uniform convexity. Abstr. Appl. Anal. 6 (2003), 375–386. 
DOI 10.1155/S1085337503203080 | 
MR 1982809[5] T. Domínguez Benavides and P. Lorenzo Ramírez: 
Fixed point theorem for multivalued nonexpansive mapping satisfying inwardness conditions. J. Math. Anal. Appl. 291 (2004), 100–108. 
DOI 10.1016/j.jmaa.2003.10.019 | 
MR 2034060[7] K. Goebel and W. A. Kirk: 
Topics in metric fixed point theorem. Cambridge University Press, Cambridge, 1990. 
MR 1074005[9] W. A. Kirk: 
Nonexpansive mappings in product spaces, set-valued mappings, and k-uniform rotundity. Proceedings of the Symposium Pure Mathematics, Vol. 45, part  2, American Mathematical Society, Providence, 1986, pp. 51–64. 
MR 0843594 | 
Zbl 0594.47048[12] N. Shahzad and S. Latif: 
Random fixed points for several classes of 1-ball-contractive and 1-set-contractive random maps. J. Math. Anal. Appl. 237 (1999), 83–92. 
DOI 10.1006/jmaa.1999.6454 | 
MR 1708163[13] K.-K. Tan and X. Z. Yuan: 
Some random fixed point theorems. Fixed Point Theory and Applications, K.-K. Tan (ed.), World Scientific, Singapore, 1992, pp. 334–345. 
MR 1190049[16] H. K. Xu: 
Metric fixed point for multivalued mappings. Dissertationes Math. (Rozprawy Mat.) 389 (2000), 39. 
MR 1799531