Title:
|
The characteristic of noncompact convexity and random fixed point theorem for set-valued operators (English) |
Author:
|
Kumam, Poom |
Author:
|
Plubtieng, Somyot |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
57 |
Issue:
|
1 |
Year:
|
2007 |
Pages:
|
269-279 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $(\Omega ,\Sigma )$ be a measurable space, $X$ a Banach space whose characteristic of noncompact convexity is less than 1, $C$ a bounded closed convex subset of $X$, $KC(C)$ the family of all compact convex subsets of $C.$ We prove that a set-valued nonexpansive mapping $T\: C\rightarrow KC(C)$ has a fixed point. Furthermore, if $X$ is separable then we also prove that a set-valued nonexpansive operator $T\: \Omega \times C\rightarrow KC(C)$ has a random fixed point. (English) |
Keyword:
|
random fixed point |
Keyword:
|
set-valued random operator |
Keyword:
|
measure of noncompactness |
MSC:
|
47H09 |
MSC:
|
47H10 |
MSC:
|
47H40 |
idZBL:
|
Zbl 1174.47042 |
idMR:
|
MR2309965 |
. |
Date available:
|
2009-09-24T11:45:39Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128171 |
. |
Reference:
|
[1] J. P. Aubin and H. Frankowska: Set-valued Analysis.Birkhäuser, Boston, 1990. MR 1048347 |
Reference:
|
[2] J. M. Ayerbe Toledano, T. Domínguez Benavides and G. López Acedo: Measures of Noncompactness in Metric Fixed Point Theory; Advances and Applications Topics in Metric Fixed Point Theory.Birkhauser-Verlag, Basel 99, 1997. MR 1483889 |
Reference:
|
[3] K. Deimling: Nonlinear Functional Analysis.Springer-Verlag, Berlin, 1974. MR 0787404 |
Reference:
|
[4] T. Domínguez Benavides and P. Lorenzo Ramírez: Fixed point theorem for multivalued nonexpansive mapping without uniform convexity.Abstr. Appl. Anal. 6 (2003), 375–386. MR 1982809, 10.1155/S1085337503203080 |
Reference:
|
[5] T. Domínguez Benavides and P. Lorenzo Ramírez: Fixed point theorem for multivalued nonexpansive mapping satisfying inwardness conditions.J. Math. Anal. Appl. 291 (2004), 100–108. MR 2034060, 10.1016/j.jmaa.2003.10.019 |
Reference:
|
[6] T. Domínguez Benavides, G. Lopez Acedo and H. K. Xu: Random fixed point of set-valued operator.Proc. Amer. Math. Soc. 124 (1996), 838–838. MR 1301487, 10.1090/S0002-9939-96-03062-6 |
Reference:
|
[7] K. Goebel and W. A. Kirk: Topics in metric fixed point theorem.Cambridge University Press, Cambridge, 1990. MR 1074005 |
Reference:
|
[8] S. Itoh: Random fixed point theorem for a multivalued contraction mapping.Pacific J. Math. 68 (1977), 85–90. Zbl 0335.54036, MR 0451228, 10.2140/pjm.1977.68.85 |
Reference:
|
[9] W. A. Kirk: Nonexpansive mappings in product spaces, set-valued mappings, and k-uniform rotundity.Proceedings of the Symposium Pure Mathematics, Vol. 45, part 2, American Mathematical Society, Providence, 1986, pp. 51–64. Zbl 0594.47048, MR 0843594 |
Reference:
|
[10] P. Lorenzo Ramírez: Some random fixed point theorems for nonlinear mappings.Nonlinear Anal. 50 (2002), 265–274. MR 1904945, 10.1016/S0362-546X(01)00751-9 |
Reference:
|
[11] P. Lorenzo Ramírez: Random fixed point of uniformly Lipschitzian mappings.Nonlinear Anal. 57 (2004), 23–34. MR 2055985, 10.1016/j.na.2004.01.003 |
Reference:
|
[12] N. Shahzad and S. Latif: Random fixed points for several classes of 1-ball-contractive and 1-set-contractive random maps.J. Math. Anal. Appl. 237 (1999), 83–92. MR 1708163, 10.1006/jmaa.1999.6454 |
Reference:
|
[13] K.-K. Tan and X. Z. Yuan: Some random fixed point theorems.Fixed Point Theory and Applications, K.-K. Tan (ed.), World Scientific, Singapore, 1992, pp. 334–345. MR 1190049 |
Reference:
|
[14] D.-H. Wagner: Survey of measurable selection theorems.SIAM J. Control Optim. 15 (1977), 859–903. Zbl 0407.28006, MR 0486391, 10.1137/0315056 |
Reference:
|
[15] H. K. Xu: Some random fixed point for condensing and nonexpansive operators.Proc. Amer. Math. Soc. 110 (1990), 395–400. MR 1021908, 10.1090/S0002-9939-1990-1021908-6 |
Reference:
|
[16] H. K. Xu: Metric fixed point for multivalued mappings.Dissertationes Math. (Rozprawy Mat.) 389 (2000), 39. MR 1799531 |
Reference:
|
[17] H. K. Xu: A random theorem for multivalued nonexpansive operators in uniformly convex Banach spaces.Proc. Amer. Math. Soc. 117 (1993), 1089–1092. MR 1123670, 10.1090/S0002-9939-1993-1123670-8 |
Reference:
|
[18] H. K. Xu: Random fixed point theorems for nonlinear uniform Lipschitzian mappings.Nonlinear Anal. 26 (1996), 1301–1311. MR 1376105, 10.1016/0362-546X(95)00013-L |
Reference:
|
[19] H. K. Xu: Multivalued nonexpansive mappings in Banach spaces.Nonlinear Anal. 43 (2001), 693–706. Zbl 0988.47034, MR 1808203, 10.1016/S0362-546X(99)00227-8 |
Reference:
|
[20] S. Reich: Fixed points in locally convex spaces.Math. Z. 125 (1972), 17–31. Zbl 0216.17302, MR 0306989, 10.1007/BF01111112 |
Reference:
|
[21] X. Yuan and J. Yu: Random fixed point theorems for nonself mappings.Nonlinear Anal. 26 (1996), 1097–1102. MR 1375652, 10.1016/0362-546X(94)00268-M |
. |