Previous |  Up |  Next

Article

Title: The characteristic of noncompact convexity and random fixed point theorem for set-valued operators (English)
Author: Kumam, Poom
Author: Plubtieng, Somyot
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 1
Year: 2007
Pages: 269-279
Summary lang: English
.
Category: math
.
Summary: Let $(\Omega ,\Sigma )$ be a measurable space, $X$ a Banach space whose characteristic of noncompact convexity is less than 1, $C$ a bounded closed convex subset of $X$, $KC(C)$ the family of all compact convex subsets of $C.$ We prove that a set-valued nonexpansive mapping $T\: C\rightarrow KC(C)$ has a fixed point. Furthermore, if $X$ is separable then we also prove that a set-valued nonexpansive operator $T\: \Omega \times C\rightarrow KC(C)$ has a random fixed point. (English)
Keyword: random fixed point
Keyword: set-valued random operator
Keyword: measure of noncompactness
MSC: 47H09
MSC: 47H10
MSC: 47H40
idZBL: Zbl 1174.47042
idMR: MR2309965
.
Date available: 2009-09-24T11:45:39Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128171
.
Reference: [1] J. P. Aubin and H. Frankowska: Set-valued Analysis.Birkhäuser, Boston, 1990. MR 1048347
Reference: [2] J. M. Ayerbe Toledano, T. Domínguez Benavides and G. López Acedo: Measures of Noncompactness in Metric Fixed Point Theory; Advances and Applications Topics in Metric Fixed Point Theory.Birkhauser-Verlag, Basel 99, 1997. MR 1483889
Reference: [3] K. Deimling: Nonlinear Functional Analysis.Springer-Verlag, Berlin, 1974. MR 0787404
Reference: [4] T. Domínguez Benavides and P. Lorenzo Ramírez: Fixed point theorem for multivalued nonexpansive mapping without uniform convexity.Abstr. Appl. Anal. 6 (2003), 375–386. MR 1982809, 10.1155/S1085337503203080
Reference: [5] T. Domínguez Benavides and P. Lorenzo Ramírez: Fixed point theorem for multivalued nonexpansive mapping satisfying inwardness conditions.J. Math. Anal. Appl. 291 (2004), 100–108. MR 2034060, 10.1016/j.jmaa.2003.10.019
Reference: [6] T. Domínguez Benavides, G. Lopez Acedo and H. K. Xu: Random fixed point of set-valued operator.Proc. Amer. Math. Soc. 124 (1996), 838–838. MR 1301487, 10.1090/S0002-9939-96-03062-6
Reference: [7] K. Goebel and W. A. Kirk: Topics in metric fixed point theorem.Cambridge University Press, Cambridge, 1990. MR 1074005
Reference: [8] S. Itoh: Random fixed point theorem for a multivalued contraction mapping.Pacific J.  Math. 68 (1977), 85–90. Zbl 0335.54036, MR 0451228, 10.2140/pjm.1977.68.85
Reference: [9] W. A. Kirk: Nonexpansive mappings in product spaces, set-valued mappings, and k-uniform rotundity.Proceedings of the Symposium Pure Mathematics, Vol. 45, part  2, American Mathematical Society, Providence, 1986, pp. 51–64. Zbl 0594.47048, MR 0843594
Reference: [10] P. Lorenzo Ramírez: Some random fixed point theorems for nonlinear mappings.Nonlinear Anal. 50 (2002), 265–274. MR 1904945, 10.1016/S0362-546X(01)00751-9
Reference: [11] P. Lorenzo Ramírez: Random fixed point of uniformly Lipschitzian mappings.Nonlinear Anal. 57 (2004), 23–34. MR 2055985, 10.1016/j.na.2004.01.003
Reference: [12] N. Shahzad and S. Latif: Random fixed points for several classes of 1-ball-contractive and 1-set-contractive random maps.J. Math. Anal. Appl. 237 (1999), 83–92. MR 1708163, 10.1006/jmaa.1999.6454
Reference: [13] K.-K. Tan and X. Z. Yuan: Some random fixed point theorems.Fixed Point Theory and Applications, K.-K. Tan (ed.), World Scientific, Singapore, 1992, pp. 334–345. MR 1190049
Reference: [14] D.-H. Wagner: Survey of measurable selection theorems.SIAM J. Control Optim. 15 (1977), 859–903. Zbl 0407.28006, MR 0486391, 10.1137/0315056
Reference: [15] H. K. Xu: Some random fixed point for condensing and nonexpansive operators.Proc. Amer. Math. Soc. 110 (1990), 395–400. MR 1021908, 10.1090/S0002-9939-1990-1021908-6
Reference: [16] H. K. Xu: Metric fixed point for multivalued mappings.Dissertationes Math. (Rozprawy Mat.) 389 (2000), 39. MR 1799531
Reference: [17] H. K. Xu: A random theorem for multivalued nonexpansive operators in uniformly convex Banach spaces.Proc. Amer. Math. Soc. 117 (1993), 1089–1092. MR 1123670, 10.1090/S0002-9939-1993-1123670-8
Reference: [18] H. K. Xu: Random fixed point theorems for nonlinear uniform Lipschitzian mappings.Nonlinear Anal. 26 (1996), 1301–1311. MR 1376105, 10.1016/0362-546X(95)00013-L
Reference: [19] H. K. Xu: Multivalued nonexpansive mappings in Banach spaces.Nonlinear Anal. 43 (2001), 693–706. Zbl 0988.47034, MR 1808203, 10.1016/S0362-546X(99)00227-8
Reference: [20] S. Reich: Fixed points in locally convex spaces.Math. Z. 125 (1972), 17–31. Zbl 0216.17302, MR 0306989, 10.1007/BF01111112
Reference: [21] X. Yuan and J. Yu: Random fixed point theorems for nonself mappings.Nonlinear Anal. 26 (1996), 1097–1102. MR 1375652, 10.1016/0362-546X(94)00268-M
.

Files

Files Size Format View
CzechMathJ_57-2007-1_22.pdf 339.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo