Previous |  Up |  Next

Article

Title: On some completeness properties for lattice ordered groups (English)
Author: Jakubík, Ján
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 45
Issue: 2
Year: 1995
Pages: 253-266
.
Category: math
.
MSC: 06F15
MSC: 06F20
MSC: 20F60
idZBL: Zbl 0835.06019
idMR: MR1331463
DOI: 10.21136/CMJ.1995.128515
.
Date available: 2009-09-24T09:46:52Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128515
.
Reference: [1] A. Bigard, K. Keimel, S. Wolfenstein: Groupes et anneaux réticulés, Lecture Notes in Mathematics 608.Springer Verlag, Berlin, 1977. MR 0552653
Reference: [2] G. J. M. H. Buskes: Disjoint sequences and completeness properties.Indag. Math (Proc. Netherl. Acad. Sci. A 88) 47 (1985), 11–19. Zbl 0566.46004, MR 0783002
Reference: [3] P. Conrad: Lattice ordered groups.Tulane University, 1970. Zbl 0258.06011
Reference: [4] P. Conrad: $K$-radical classes of lattice ordered groups.Algebra, Proc. Conf. Carbondale (1980), Lecture Notes in Mathematics 848, 1981, pp. 186–207. Zbl 0455.06010, MR 0613186
Reference: [5] M. Darnel: Closure operations on radicals of lattice ordered groups.Czechoslov. Math. J. 37 (1987), 51–64. MR 0875127
Reference: [6] L. Fuchs: Partially ordered algebraic systems.Oxford, 1963. Zbl 0137.02001, MR 0171864
Reference: [7] W. C. Holland: Varieties of $\ell $-groups are torsion classes.Czechoslov. Math. J. 29 (1979), 11–12. MR 0518135
Reference: [8] J. Jakubík: Radical mappings and radical classes of lattice ordered groups.Symposia Math. 31, Academic Press, New York-London, 1977, pp. 451–477. MR 0491397
Reference: [9] J. Jakubík: Projectable kernel of a lattice ordered group.Universal algebra and applications, Banach Center Publ. Vol. 9, 1982, pp. 105–112. MR 0738807
Reference: [10] J. Jakubík: Kernels of lattice ordered groups defined by properties of sequences.Časopis pěst. matem. 109 (1984), 290–298. MR 0755595
Reference: [11] J. Jakubík: On some types of kernels of a convergence $\ell $-group.Czechoslov. Math. J. 39 (1989), 239–247. MR 0992131
Reference: [12] J. Jakubík: Closure operators on the lattice of radical classes of lattice ordered groups.Czechoslov. Math. J. 38 (1988), 71–77. MR 0925941
Reference: [13] J. Jakubík: On a radical class of lattice ordered groups.Czechoslov. Math. J. 39 (1989), 641–643. MR 1017999
Reference: [14] W. A. J. Luxemburg, A. C. Zaanen: Riesz spaces, Volume I.Amsterdam-London, 1971. MR 0511676
Reference: [15] J. Martinez: Torsion theory for lattice groups.Czechoslov. Math. J. 25 (1975), 284–292. MR 0389705
Reference: [16] N. Ja. Medvedev: On the lattice of radicals of a finitely generated $\ell $-group.Math. Slovaca 33 (1983), 185–188. (Russian) MR 0699088
Reference: [17] R. Sikorski: Boolean algebras, Second edition.Berlin, 1964. MR 0177920
.

Files

Files Size Format View
CzechMathJ_45-1995-2_8.pdf 1.277Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo