[1] BLOCK. L.: 
Stability of periodic orbits in the theorem of Sarkovskii. Proc. Amer. Math. Soc. 82. 1981. 333-336. 
MR 0593484 | 
Zbl 0462.54029 
[2] FALCONER. K. J.: 
Geometry of Fractal Sets. 1st ed. Cambridge University Press 1984. 
MR 0867284 
[3] HSINCHU-XIONG JINGCHENG: 
A counterexample in dyaynamical systems of [0, 1]. Proc. Amer. Math. Soc. 97, 1986. 361-366. 
MR 0835899 
[4] KENŽEGULOV. CH. K., ŠARKOVSKII. A. N.: 
On properties of the set of limit points of an iterated sequence of continuous functions (Russian). Volžsk. Mat. Sb. 3, 1965, 343-348. 
MR 0199316 
[5] ŠARKOVSKII. A. N.: 
Attracting sets containing no cycles (Russian). Ukrain. Mat. Žurn. 20, 1968. 136-142. 
MR 0225314 
[6] ŠARKOVSKII. A. N.: On a theorem of G. D. Birkhoff (Russian). Dopov. Akad. Nauk USSR, 1967, No. 5. 429-432.
[7] SMÍTAL. J.: 
Chaotic functions with zero topological entropy. Trans. Amer. Math. Soc. 297, 1986. 269-282. 
MR 0849479 | 
Zbl 0639.54029 
[8] VEREJKINA M. B., ŠARKOVSKII. A. N.: /: 
Recurrence in one-dimensional dynamical systems, in Approx. and Qualitative Methods of the Theory of Differential & Functional Equations (Russian). Instit. Math. AN USSR. Kiev 1983. pp. 35-46. 
MR 0753681