Previous |  Up |  Next

Article

Title: A chaotic function with zero topological entropy having a non-perfect attractor (English)
Author: Kirchheim, Bernd
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 40
Issue: 3
Year: 1990
Pages: 267-272
.
Category: math
.
MSC: 28D20
MSC: 37D45
MSC: 37E99
MSC: 54C70
idZBL: Zbl 0758.58021
idMR: MR1094779
.
Date available: 2009-09-25T10:25:20Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/129388
.
Reference: [1] BLOCK. L.: Stability of periodic orbits in the theorem of Sarkovskii.Proc. Amer. Math. Soc. 82. 1981. 333-336. Zbl 0462.54029, MR 0593484
Reference: [2] FALCONER. K. J.: Geometry of Fractal Sets.1st ed. Cambridge University Press 1984. MR 0867284
Reference: [3] HSINCHU-XIONG JINGCHENG: A counterexample in dyaynamical systems of [0, 1].Proc. Amer. Math. Soc. 97, 1986. 361-366. MR 0835899
Reference: [4] KENŽEGULOV. CH. K., ŠARKOVSKII. A. N.: On properties of the set of limit points of an iterated sequence of continuous functions (Russian).Volžsk. Mat. Sb. 3, 1965, 343-348. MR 0199316
Reference: [5] ŠARKOVSKII. A. N.: Attracting sets containing no cycles (Russian).Ukrain. Mat. Žurn. 20, 1968. 136-142. MR 0225314
Reference: [6] ŠARKOVSKII. A. N.: On a theorem of G. D. Birkhoff (Russian).Dopov. Akad. Nauk USSR, 1967, No. 5. 429-432.
Reference: [7] SMÍTAL. J.: Chaotic functions with zero topological entropy.Trans. Amer. Math. Soc. 297, 1986. 269-282. Zbl 0639.54029, MR 0849479
Reference: [8] VEREJKINA M. B., ŠARKOVSKII. A. N.: /: Recurrence in one-dimensional dynamical systems, in Approx. and Qualitative Methods of the Theory of Differential & Functional Equations (Russian).Instit. Math. AN USSR. Kiev 1983. pp. 35-46. MR 0753681
.

Files

Files Size Format View
MathSlov_40-1990-3_5.pdf 392.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo