Previous |  Up |  Next

Article

Title: The remarkable generalized Petersen graph $G(8,3)$ (English)
Author: Marušič, Dragan
Author: Pisanski, Tomaž
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 50
Issue: 2
Year: 2000
Pages: 117-121
.
Category: math
.
MSC: 05C25
idZBL: Zbl 0984.05044
idMR: MR1763113
.
Date available: 2009-09-25T11:43:04Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/133137
.
Reference: [1] BETTEN A.-BRINKMANN G.-PISANSKI T.: Counting symmetric v3 configurations.(Submitted).
Reference: [2] BIGGS N.: Algebraic Graph Theory.(2nd ed.), Cambridge Univ. Press, Cambridge, 1993. MR 1271140
Reference: [3] : The Foster Census.(I. Z. Bouwer et al, eds.), The Charles Babbage Research Centre, Winnipeg, 1988. Zbl 0639.05043, MR 0935537
Reference: [4] COXETER H. S. M.-MOSER W. O. J.: Generators and Relators for Discrete Groups.(4th ed.). Ergeb. Math. Grenzgeb. (3), Bd. 14, Springer-Verlag, Berlin-Heidelberg-New York, 1980. MR 0562913
Reference: [5] DU S. F.-MARUŠIČ D.-WALLER A. O.: On 2-arc-transitive covers of complete graphs.J. Combin. Theory Ser. B 74 (1998), 276-290. Zbl 1026.05057, MR 1654121
Reference: [6] FRUCHT R.-GRAVER J. E.-WATKINS M. E.: The groups of the generalized Petersen graphs.Proc. Cambridge Pnilos. Soc. 70 (1971), 211-218. Zbl 0221.05069, MR 0289365
Reference: [7] HLADNIK M.-MARUŠIČ D.-PISANSKI T.: Cyclic Haar graphs.(Submitted). Zbl 0993.05084
Reference: [8] GROPP H.: Configurations.In: The CRC Handbook of Combinatorial Designs (C J. Colburn, J. H. Dinitz, eds.), CRC Press Ser. on Discr. Math, and its Appl., CRC Press, Boca Raton, CA, 1996, pp. 253-255. Zbl 0864.05024, MR 1392993
Reference: [9] LOVREČIČ-SARAŽIN M.: A note on the generalized Petersen graphs that are also Cayley graphs.J. Combin. Theory Ser. B 69 (1997), 226-229. Zbl 0867.05027, MR 1438623
Reference: [10] NEDELA R.-ŠKOVIERA M.: Which generalized Petersen graphs are Cayley graphs.J. Graph Theory 19 (1995), 1-11. Zbl 0812.05026, MR 1315420
Reference: [11] PISANSKI T.-RANDIČ M.: Bridges between Geometry and Graph Theory.(To appear). MR 1782654
Reference: [12] ŠKOVIERA M.-ŠIRÁŇ J.: Regular maps from Cayley graphs, Part 1: Balanced Cayley maps.Discrete Math. 109 (1992), 265-276. MR 1192388
Reference: [13] SUROWSKI D.: The Möbius-Kantor regular map of genus two and regular Ramified coverings.Presented at SIGMAC 98, Flagstaff, AZ, July 20-24, 1998, http://odin.math.nau.edu:80/~sew/sigmac.html.
Reference: [14] TUCKER T. W.: There is only one group of genus two.J. Combin. Theory Ser. B 36 (1984), 269-275. MR 0753604
.

Files

Files Size Format View
MathSlov_50-2000-2_1.pdf 434.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo