Previous |  Up |  Next

Article

Title: The Vitali convergence theorem for the vector-valued McShane integral (English)
Author: Reynolds, Richard
Author: Swartz, Charles
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 129
Issue: 2
Year: 2004
Pages: 159-176
Summary lang: English
.
Category: math
.
Summary: The classical Vitali convergence theorem gives necessary and sufficient conditions for norm convergence in the space of Lebesgue integrable functions. Although there are versions of the Vitali convergence theorem for the vector valued McShane and Pettis integrals given by Fremlin and Mendoza, these results do not involve norm convergence in the respective spaces. There is a version of the Vitali convergence theorem for scalar valued functions defined on compact intervals in $\mathbb{R}^{n}$ given by Kurzweil and Schwabik, but again this version does not consider norm convergence in the space of integrable functions. In this paper we give a version of the Vitali convergence theorem for norm convergence in the space of vector-valued McShane integrable functions. (English)
Keyword: vector-valued McShane integral
Keyword: Vitali theorem
Keyword: norm convergence
MSC: 26A39
MSC: 26A42
MSC: 28B05
MSC: 46G10
idZBL: Zbl 1051.28007
idMR: MR2073512
DOI: 10.21136/MB.2004.133906
.
Date available: 2009-09-24T22:13:57Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133906
.
Reference: [1] N. Dunford, J. Schwartz: Linear Operators.Interscience, N.Y., 1958.
Reference: [2] D. H. Fremlin, J. Mendoza: On the integration of vector-valued functions.Illinois J. Math. 38 (1994), 127–147. MR 1245838, 10.1215/ijm/1255986891
Reference: [3] D. H. Fremlin: The generalized McShane integral.Illinois J. Math. 39 (1995), 39–67. Zbl 0810.28006, MR 1299648, 10.1215/ijm/1255986628
Reference: [4] R. Gordon: The McShane integral of Banach-valued functions.Illinois J. Math. 34 (1990), 557–567. Zbl 0685.28003, MR 1053562, 10.1215/ijm/1255988170
Reference: [5] R. Gordon: Some comments on the McShane and Henstock integrals.Real Anal. Exchange 23 (1997/98), 329–341. MR 1609917
Reference: [6] E. Hewitt, K. Stromberg: Real and Abstract Analysis.Springer, N.Y., 1965. MR 0367121
Reference: [7] J. Kurzweil, Š. Schwabik: On the McShane integrability of Banach space-valued functions.(to appear). MR 2083811
Reference: [8] J. Kurzweil, Š. Schwabik: McShane equi-integrability and Vitali’s convergence theorem.Math. Bohem. 129 (2004), 141–157. MR 2073511
Reference: [9] E. J. McShane: Unified Integration.Academic Press, N.Y., 1983. Zbl 0551.28001, MR 0740710
Reference: [10] K. Musial: Topics in the theory of Pettis integration.Rendiconti Inst. Mat. Univ. Trieste 23 (1991), 177–262. Zbl 0798.46042, MR 1248654
Reference: [11] R. Reynolds: The Generalized McShane Integral for Vector-Valued Functions.Ph.D. dissertation, New Mexico State University, 1997.
Reference: [12] H. Royden: Real Analysis.Macmillan, N.Y., 1988. Zbl 0704.26006, MR 0151555
Reference: [13] C. Swartz: Measure, Integration, and Function Spaces.World Scientific, Singapore, 1994. Zbl 0814.28001, MR 1337502
Reference: [14] C. Swartz: Beppo Levi’s theorem for the vector-valued McShane integral.Bull. Belgian Math. Soc. 4 (1997), 589–599. Zbl 1038.46505, MR 1600292, 10.36045/bbms/1105737762
Reference: [15] C. Swartz: Uniform integrability and mean convergence for the vector-valued McShane integral.Real Anal. Exchange 23 (1997/98), 303–312. MR 1609766
Reference: [16] C. Swartz: Introduction to Gauge Integrals.World Scientific, Singapore, 2001. Zbl 0982.26006, MR 1845270
.

Files

Files Size Format View
MathBohem_129-2004-2_5.pdf 357.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo