Previous |  Up |  Next

Article

Title: McShane equi-integrability and Vitali’s convergence theorem (English)
Author: Kurzweil, Jaroslav
Author: Schwabik, Štefan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 129
Issue: 2
Year: 2004
Pages: 141-157
Summary lang: English
.
Category: math
.
Summary: The McShane integral of functions $f\:I\rightarrow \mathbb{R}$ defined on an $m$-dimensional interval $I$ is considered in the paper. This integral is known to be equivalent to the Lebesgue integral for which the Vitali convergence theorem holds. For McShane integrable sequences of functions a convergence theorem based on the concept of equi-integrability is proved and it is shown that this theorem is equivalent to the Vitali convergence theorem. (English)
Keyword: McShane integral
Keyword: Vitali convergence theorem
Keyword: equi-integrability
MSC: 26A39
MSC: 26B99
idZBL: Zbl 1051.26012
idMR: MR2073511
DOI: 10.21136/MB.2004.133903
.
Date available: 2009-09-24T22:13:45Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133903
.
Reference: [1] R. A. Gordon: The integrals of Lebesgue, Denjoy, Perron, and Henstock.American Mathematical Society, Providence, RI, 1994. Zbl 0807.26004, MR 1288751
Reference: [2] E. J. McShane: A Riemann-type integral that includes Lebesgue-Stieltjes, Bochner and stochastic integrals.Mem. Am. Math. Soc. 88 (1969). Zbl 0188.35702, MR 0265527
Reference: [3] I. P. Natanson: Theory of Functions of a Real Variable.Frederick Ungar, New York, 1955, 1960. MR 0067952
Reference: [4] Š. Schwabik, Ye Guoju: On the strong McShane integral of functions with values in a Banach space.Czechoslovak Math. J. 51 (2001), 819–828. MR 1864044, 10.1023/A:1013721114330
Reference: [5] J. Kurzweil, Š. Schwabik: On McShane integrability of Banach space-valued functions.(to appear). MR 2083811
.

Files

Files Size Format View
MathBohem_129-2004-2_4.pdf 356.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo