Title:
|
McShane equi-integrability and Vitali’s convergence theorem (English) |
Author:
|
Kurzweil, Jaroslav |
Author:
|
Schwabik, Štefan |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
129 |
Issue:
|
2 |
Year:
|
2004 |
Pages:
|
141-157 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The McShane integral of functions $f\:I\rightarrow \mathbb{R}$ defined on an $m$-dimensional interval $I$ is considered in the paper. This integral is known to be equivalent to the Lebesgue integral for which the Vitali convergence theorem holds. For McShane integrable sequences of functions a convergence theorem based on the concept of equi-integrability is proved and it is shown that this theorem is equivalent to the Vitali convergence theorem. (English) |
Keyword:
|
McShane integral |
Keyword:
|
Vitali convergence theorem |
Keyword:
|
equi-integrability |
MSC:
|
26A39 |
MSC:
|
26B99 |
idZBL:
|
Zbl 1051.26012 |
idMR:
|
MR2073511 |
DOI:
|
10.21136/MB.2004.133903 |
. |
Date available:
|
2009-09-24T22:13:45Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/133903 |
. |
Reference:
|
[1] R. A. Gordon: The integrals of Lebesgue, Denjoy, Perron, and Henstock.American Mathematical Society, Providence, RI, 1994. Zbl 0807.26004, MR 1288751 |
Reference:
|
[2] E. J. McShane: A Riemann-type integral that includes Lebesgue-Stieltjes, Bochner and stochastic integrals.Mem. Am. Math. Soc. 88 (1969). Zbl 0188.35702, MR 0265527 |
Reference:
|
[3] I. P. Natanson: Theory of Functions of a Real Variable.Frederick Ungar, New York, 1955, 1960. MR 0067952 |
Reference:
|
[4] Š. Schwabik, Ye Guoju: On the strong McShane integral of functions with values in a Banach space.Czechoslovak Math. J. 51 (2001), 819–828. MR 1864044, 10.1023/A:1013721114330 |
Reference:
|
[5] J. Kurzweil, Š. Schwabik: On McShane integrability of Banach space-valued functions.(to appear). MR 2083811 |
. |