Title:
|
Single valued extension property and generalized Weyl’s theorem (English) |
Author:
|
Berkani, M. |
Author:
|
Castro, N. |
Author:
|
Djordjević, S. V. |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
131 |
Issue:
|
1 |
Year:
|
2006 |
Pages:
|
29-38 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $T$ be an operator acting on a Banach space $X$, let $\sigma (T)$ and $ \sigma _{BW}(T) $ be respectively the spectrum and the B-Weyl spectrum of $T$. We say that $T$ satisfies the generalized Weyl’s theorem if $ \sigma _{BW}(T)= \sigma (T) \setminus E(T)$, where $E(T)$ is the set of all isolated eigenvalues of $T$. The first goal of this paper is to show that if $T$ is an operator of topological uniform descent and $0$ is an accumulation point of the point spectrum of $T,$ then $T$ does not have the single valued extension property at $0$, extending an earlier result of J. K. Finch and a recent result of Aiena and Monsalve. Our second goal is to give necessary and sufficient conditions under which an operator having the single valued extension property satisfies the generalized Weyl’s theorem. (English) |
Keyword:
|
single valued extension property |
Keyword:
|
B-Weyl spectrum |
Keyword:
|
generalized Weyl’s theorem |
MSC:
|
47A10 |
MSC:
|
47A53 |
MSC:
|
47A55 |
idZBL:
|
Zbl 1114.47015 |
idMR:
|
MR2211001 |
DOI:
|
10.21136/MB.2006.134080 |
. |
Date available:
|
2009-09-24T22:23:51Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134080 |
. |
Reference:
|
[1] Aiena, P., Monsalve, O.: Operators which do not have single valued extension property.J. Math. Anal. Appl. 250 (2000), 435–448. MR 1786074, 10.1006/jmaa.2000.6966 |
Reference:
|
[2] Berkani, M.: On a class of quasi-Fredholm operators.Int. Equ. Oper. Theory 34 (1999), 244–249. Zbl 0939.47010, MR 1694711, 10.1007/BF01236475 |
Reference:
|
[3] Berkani, M.: Restriction of an operator to the range of its powers.Studia Math. 140 (2000), 163–175. Zbl 0978.47011, MR 1784630, 10.4064/sm-140-2-163-175 |
Reference:
|
[4] Berkani, M.: Index of B-Fredholm operators and generalization of a Weyl’s Theorem.Proc. Amer. Math. Soc. 130 (2002), 1717–1723. MR 1887019, 10.1090/S0002-9939-01-06291-8 |
Reference:
|
[5] Berkani, M., Sarih, M.: An Atkinson type theorem for B-Fredholm operators.Studia Math. 148 (2001), 251–257. MR 1880725, 10.4064/sm148-3-4 |
Reference:
|
[6] Berkani, M., Koliha, J. J.: Weyl type theorems for bounded linear operators.Acta Sci. Math. (Szeged) 69 (2003), 359–376. MR 1991673 |
Reference:
|
[7] Berkani, M.: B-Weyl spectrum and poles of the resolvent.J. Math. Anal. Appl. 272 (2002), 596–603. Zbl 1043.47004, MR 1930862, 10.1016/S0022-247X(02)00179-8 |
Reference:
|
[8] Finch, J. K.: The single valued extension property on a Banach space.Pac. J. Math. 58 (1975), 61–69. Zbl 0315.47002, MR 0374985, 10.2140/pjm.1975.58.61 |
Reference:
|
[9] Grabiner, S.: Uniform ascent and descent of bounded operators.J. Math. Soc. Japan 34 (1982), 317–337. Zbl 0477.47013, MR 0651274, 10.2969/jmsj/03420317 |
Reference:
|
[10] Jeon, I. H.: Weyl’s theorem for operators with a growth condition and Dunford’s property $(C)$.Indian J. Pure Appl. Math. 33 (2002), 403–407. MR 1894635 |
Reference:
|
[11] Kordula, V., Müller, V.: On the axiomatic theory of the spectrum.Stud. Math. 119 (1996), 109–128. MR 1391471 |
Reference:
|
[12] Lay, D. C.: Spectral analysis using ascent, descent, nullity and defect.Math. Ann. 184 (1970), 197–214. Zbl 0177.17102, MR 0259644, 10.1007/BF01351564 |
Reference:
|
[13] Mbekhta, M., Müller V.: On the axiomatic theory of the spectrum, II.Stud. Math. 119 (1996), 129–147. MR 1391472, 10.4064/sm-119-2-129-147 |
Reference:
|
[14] Roch, S., Silbermann, B.: Continuity of generalized inverses in Banach algebras.Stud. Math. 136 (1999), 197–227. MR 1724245 |
Reference:
|
[15] Schmoeger, C.: On isolated points of the spectrum of a bounded linear operator.Proc. Am. Math. Soc. 117 (1993), 715–719. Zbl 0780.47019, MR 1111438, 10.1090/S0002-9939-1993-1111438-8 |
Reference:
|
[16] Weyl, H.: Über beschränkte quadratische Formen, deren Differenz vollstetig ist.Rend. Circ. Mat. Palermo 27 (1909), 373–392. 10.1007/BF03019655 |
. |