Previous |  Up |  Next

Article

Title: Basic subgroups in commutative modular group rings (English)
Author: Danchev, Peter V.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 129
Issue: 1
Year: 2004
Pages: 79-90
Summary lang: English
.
Category: math
.
Summary: Let $S(RG)$ be a normed Sylow $p$-subgroup in a group ring $RG$ of an abelian group $G$ with $p$-component $G_p$ and a $p$-basic subgroup $B$ over a commutative unitary ring $R$ with prime characteristic $p$. The first central result is that $1+I(RG; B_p) + I(R(p^i)G; G)$ is basic in $S(RG)$ and $B[1+I(RG; B_p) + I(R(p^i)G; G)]$ is $p$-basic in $V(RG)$, and $[1+I(RG; B_p) + I(R(p^i)G; G)]G_p/G_p$ is basic in $S(RG)/G_p$ and $[1+I(RG; B_p) + I(R(p^i)G; G)]G/G$ is $p$-basic in $V(RG)/G$, provided in both cases $G/G_p$ is $p$-divisible and $R$ is such that its maximal perfect subring $R^{p^i}$ has no nilpotents whenever $i$ is natural. The second major result is that $B(1+I(RG; B_p))$ is $p$-basic in $V(RG)$ and $(1+I(RG; B_p))G/G$ is $p$-basic in $V(RG)/G$, provided $G/G_p$ is $p$-divisible and $R$ is perfect. In particular, under these circumstances, $S(RG)$ and $S(RG)/G_p$ are both starred or algebraically compact groups. The last results offer a new perspective on the long-standing classical conjecture which says that $S(RG)/G_p$ is totally projective. The present facts improve the results concerning this topic due to Nachev (Houston J. Math., 1996) and others obtained by us in (C. R. Acad. Bulg. Sci., 1995) and (Czechoslovak Math. J., 2002). (English)
Keyword: perfect rings
Keyword: Abelian $p$-groups
Keyword: groups of normalized units
Keyword: group rings
Keyword: basic subgroups
MSC: 16S34
MSC: 16U60
MSC: 20C07
MSC: 20E07
MSC: 20K10
MSC: 20K20
MSC: 20K21
idZBL: Zbl 1057.16028
idMR: MR2048788
DOI: 10.21136/MB.2004.134103
.
Date available: 2009-09-24T22:12:50Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134103
.
Reference: [1] P. V. Danchev: Topologically pure and basis subgroups in commutative group rings.Compt. Rend. Acad. Bulg. Sci. 48 (1995), 7–10. Zbl 0853.16040, MR 1405499
Reference: [2] P. V. Danchev: Basic subgroups in abelian group rings.Czechoslovak Math. J. 52 (2002), 129–140. Zbl 1003.16026, MR 1885462, 10.1023/A:1021779506416
Reference: [3] P. V. Danchev: Commutative group algebras of $\sigma $-summable abelian groups.Proc. Amer. Math. Soc. 125 (1997), 2559–2564. Zbl 0886.16024, MR 1415581, 10.1090/S0002-9939-97-04052-5
Reference: [4] P. V. Danchev: Torsion completeness of Sylow $p$-groups in modular group rings.Acta Math. Hungar. 75 (1997), 317–322. Zbl 0927.16031, MR 1448707, 10.1023/A:1006597605945
Reference: [5] P. V. Danchev: $C_{\lambda }$-groups and $\lambda $-basic subgroups in modular group rings.Hokkaido Math. J. 30 (2001), 283–296. Zbl 0989.16019, MR 1844820, 10.14492/hokmj/1350911954
Reference: [6] L. Fuchs: Infinite Abelian Groups, I–II.Mir, Moskva, 1974–1977. MR 0457533
Reference: [7] P. Hill, W. Ullery: Almost totally projective groups.Czechoslovak Math. J. 46 (1996), 249–258. MR 1388614
Reference: [8] J. Irwin, F. Richman: Direct sums of countable groups and related concepts.J. Algebra 2 (1965), 443–450. MR 0191955, 10.1016/0021-8693(65)90005-0
Reference: [9] G. Karpilovsky: Unit Groups of Group Rings.North-Holland, Amsterdam, 1989. Zbl 0687.16010, MR 1042757
Reference: [10] S. Khabbaz: Abelian torsion groups having a minimal system of generators.Trans. Amer. Math. Soc. 98 (1961), 527–538. Zbl 0094.24603, MR 0125877, 10.1090/S0002-9947-1961-0125877-9
Reference: [11] W. May: Commutative group algebras.Trans. Amer. Math. Soc. 136 (1969), 139–149. Zbl 0182.04401, MR 0233903, 10.1090/S0002-9947-1969-0233903-9
Reference: [12] W. May: Modular group algebras of simply presented abelian groups.Proc. Amer. Math. Soc. 104 (1988), 403–409. Zbl 0691.20008, MR 0962805, 10.1090/S0002-9939-1988-0962805-2
Reference: [13] W. May: The direct factor problem for modular abelian group algebras.Contemp. Math. 93 (1989), 303–308. Zbl 0676.16010, MR 1003359, 10.1090/conm/093/1003359
Reference: [14] N. Nachev: Torsion completeness of the group of normalized units in modular group rings.Compt. Rend. Acad. Bulg. Sci. 47 (1994), 9–11. Zbl 0823.16022, MR 1332596
Reference: [15] N. Nachev: Invariants of the Sylow $p$-subgroup of the unit group of commutative group ring of characteristic $p$.Compt. Rend. Acad. Bulg. Sci. 47 (1994), 9–12. MR 1319683
Reference: [16] N. Nachev: Invariants of the Sylow $p$-subgroup of the unit group of a commutative group ring of characteristic $p$.Commun. Algebra 23 (1995), 2469–2489. Zbl 0828.16037, MR 1330795, 10.1080/00927879508825355
Reference: [17] N. Nachev: Basic subgroups of the group of normalized units in modular group rings.Houston J. Math. 22 (1996), 225–232. MR 1402745
.

Files

Files Size Format View
MathBohem_129-2004-1_7.pdf 336.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo