Previous |  Up |  Next

Article

Keywords:
strong McShane integral; strong absolute continuity; McShane variational measure
Summary:
Some full characterizations of the strong McShane integral are obtained.
References:
[1] A. M. Bruckner, J. B. Bruckner, B. S. Thomson: Real Analysis. Prentice-Hall, 1997.
[2] J. A. Clarkson: Uniformly convex spaces. Trans. Amer. Math. Soc. 40 (1936), 396–414. DOI 10.1090/S0002-9947-1936-1501880-4 | MR 1501880 | Zbl 0015.35604
[3] L. Di Piazza: Variational measures in the theory of the integration in ${\mathbb{R}}^m$. Czechoslovak Math. J. 51 (2001), 95–110. DOI 10.1023/A:1013705821657 | MR 1814635
[4] D. H. Fremlin, J. Mendoza: On the integration of vector-valued functions. Illinois J. Math. 38 (1994), 127–141. DOI 10.1215/ijm/1255986891 | MR 1245838
[5] R. A. Gordon: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Amer. Math. Soc., Providence, 1994. MR 1288751 | Zbl 0807.26004
[6] J. Jarník, J. Kurzweil: Perron-type integration on $n$-dimensional intervals and its properties. Czechoslovak Math. J. 45 (1995), 79–106. MR 1314532
[7] Lee Peng Yee, R. Výborný: The Integral, An Easy Approach after Kurzweil and Henstock. Australian Mathematical Society Lecture Ser. 14, Cambridge University Press, 2000. MR 1756319
[8] Lee Tuo-Yeong: Every absolutely Henstock-Kurzweil integrable function is McShane integrable: an alternative proof. (to appear). MR 2095582 | Zbl 1064.28011
[9] W. F. Pfeffer: A note on the generalized Riemann integral. Proc. Amer. Math. Soc. 103 (1988), 1161–1166. DOI 10.1090/S0002-9939-1988-0955000-4 | MR 0955000 | Zbl 0656.26010
[10] W. F. Pfeffer: The Riemann Approach to Integration. Cambridge Univ. Press, Cambridge, 1993. MR 1268404 | Zbl 0804.26005
[11] Š. Schwabik, Ye Guoju: On the strong McShane integral of functions with values in a Banach space. Czechoslovak Math. J. 51 (2001), 819–828. DOI 10.1023/A:1013721114330 | MR 1864044
[12] C. Swartz: Introduction to the Gauge Integrals. World Scientific, 2001. MR 1845270
[13] B. S. Thomson: Derivates of Interval Functions. Mem. Amer. Math. Soc. 452, 1991. MR 1078198 | Zbl 0734.26003
Partner of
EuDML logo