[1] A. M. Bruckner, J. B. Bruckner, B. S. Thomson: Real Analysis. Prentice-Hall, 1997.
[5] R. A. Gordon:
The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Amer. Math. Soc., Providence, 1994.
MR 1288751 |
Zbl 0807.26004
[6] J. Jarník, J. Kurzweil:
Perron-type integration on $n$-dimensional intervals and its properties. Czechoslovak Math. J. 45 (1995), 79–106.
MR 1314532
[7] Lee Peng Yee, R. Výborný:
The Integral, An Easy Approach after Kurzweil and Henstock. Australian Mathematical Society Lecture Ser. 14, Cambridge University Press, 2000.
MR 1756319
[8] Lee Tuo-Yeong:
Every absolutely Henstock-Kurzweil integrable function is McShane integrable: an alternative proof. (to appear).
MR 2095582 |
Zbl 1064.28011
[10] W. F. Pfeffer:
The Riemann Approach to Integration. Cambridge Univ. Press, Cambridge, 1993.
MR 1268404 |
Zbl 0804.26005
[11] Š. Schwabik, Ye Guoju:
On the strong McShane integral of functions with values in a Banach space. Czechoslovak Math. J. 51 (2001), 819–828.
DOI 10.1023/A:1013721114330 |
MR 1864044
[12] C. Swartz:
Introduction to the Gauge Integrals. World Scientific, 2001.
MR 1845270