Article
Keywords:
integral; Kurzweil-Henstock integral; step-function; filterbase
Summary:
A short approach to the Kurzweil-Henstock integral is outlined, based on approximating a real function on a compact interval by suitable step-functions, and using filterbase convergence to define the integral. The properties of the integral are then easy to establish.
References:
[5] J. Kurzweil:
Nichtabsolut konvergente Intgegrale. Teubner, Leipzig, 1980.
MR 0597703
[6] S. Leader:
The Kurzweil-Henstock Integral and its Differentials. Marcel Dekker, New York, 2001.
MR 1837270 |
Zbl 0984.26002
[7] Lee Peng-Yee:
Lanzhou Lectures on Integration. World Scientific, Singapore, 1989.
MR 1050957
[8] Lee Peng-Yee, R. Výborný:
The Integral: an easy approach after Kurzweil and Henstock. Cambridge University Press, 2000.
MR 1756319
[9] E. Schechter:
Handbook of Analysis and its Foundations. Academic Press, San Diego, 1997 (Chapter 24: Generalized Riemann integrals).
MR 1417259
[10] Š. Schwabik: Integration on $\mathbb{R}$: Kurzweil Theory. Charles University, Praha, 1999. (Czech)