| Title: | A posteriori error estimates for parabolic differential systems solved by the finite element method of lines (English) | 
| Author: | Segeth, Karel | 
| Language: | English | 
| Journal: | Applications of Mathematics | 
| ISSN: | 0862-7940 (print) | 
| ISSN: | 1572-9109 (online) | 
| Volume: | 39 | 
| Issue: | 6 | 
| Year: | 1994 | 
| Pages: | 415-443 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | Systems of parabolic differential equations are studied in the paper. Two a posteriori error estimates for the approximate solution obtained by the finite element method of lines are presented. A statement on the rate of convergence of the approximation of error by estimator to the error is proved. (English) | 
| Keyword: | a posteriori error estimate | 
| Keyword: | system of parabolic equations | 
| Keyword: | finite element method | 
| Keyword: | method of lines | 
| MSC: | 35K15 | 
| MSC: | 65M15 | 
| MSC: | 65M20 | 
| idZBL: | Zbl 0822.65068 | 
| idMR: | MR1298731 | 
| DOI: | 10.21136/AM.1994.134269 | 
| . | 
| Date available: | 2009-09-22T17:45:33Z | 
| Last updated: | 2020-07-28 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/134269 | 
| . | 
| Reference: | [1] S. Adjerid, J.E. Flaherty: A moving finite element method with error estimation and refinement for one-dimensional time dependent partial differential equations.SIAM J. Numer. Anal. 23 (1986), 778–796. MR 0849282, 10.1137/0723050 | 
| Reference: | [2] S. Adjerid, J.E. Flaherty, Y.J. Wang: A posteriori error estimation with finite element methods of lines for one-dimensional parabolic systems.Numer. Math. 65 (1993), 1–21. MR 1217436, 10.1007/BF01385737 | 
| Reference: | [3] I. Babuška, W.C. Rheinboldt: A posteriori error estimates for the finite element method.Internat. J. Numer. Methods Engrg. 12 (1978), 1597–1615. 10.1002/nme.1620121010 | 
| Reference: | [4] M. Bieterman, I. Babuška: The finite element method for parabolic equations I, II.Numer. Math. 40 (1982), 339–371, 373–406. 10.1007/BF01396451 | 
| Reference: | [5] F.R. Gantmacher: Matrix Theory.Moskva, Nauka, 1966. (Russian) | 
| Reference: | [6] A.C. Hindmarsh: LSODE and LSODI, two new initial value ordinary differential equation solvers.ACM SIGNUM Newsletter 15 (1980), 10–11. 10.1145/1218052.1218054 | 
| Reference: | [7] J.T. Oden, G.F. Carey: Finite Elements: Mathematical Aspects, Vol. 4.Englewood Cliffs, NJ, Prentice-Hall, 1983. MR 0767804 | 
| Reference: | [8] L.R. Petzold: A Description of DDASSL: A Differential/Algebraic System Solver.Sandia Report No. Sand 82-8637, Livermore, CA, Sandia National Laboratory, 1982. MR 0751605 | 
| Reference: | [9] B. Szabo, I. Babuška: Finite Element Analysis.New York, J. Wiley & Sons, 1991. MR 1164869 | 
| Reference: | [10] V. Thomée: Negative norm estimates and superconvergence in Galerkin methods for parabolic problems.Math. Comp. 34 (1980), 93–113. MR 0551292, 10.2307/2006222 | 
| Reference: | [11] R. Wait, A.R. Mitchell: Finite Element Analysis and Applications.Chichester, J. Wiley & Sons, 1985. MR 0817440 | 
| . |