[1] P. Alart: Contribution à la résolution numérique des inclusions différentielles. Thèse de 3 cycle, Montpellier, 1985.
[2] P. Alart and B. Lemaire:
Penalization in non-classical convex programming via variational convergence. Math. Programming 51 (1991), 307–331.
DOI 10.1007/BF01586942 |
MR 1130329
[3] A.S. Antipin: Regularization methods for convex programming problems. Ekonomika i Mat. Metody 11 (1975), 336–342. (Russian)
[4] A.S. Antipin: On a method for convex programs using a symmetrical modification of the Lagrange function. Ekonomika i Mat. Metody 12 (1976), 1164–1173 (in Russian).
[5] H. Attouch:
Variational Convergence for Functions and Operators, Applicable Mathematics Series. Pitman, London, 1984.
MR 0773850
[9] A.B. Bakushinski and B.T. Polyak: About the solution of variational inequalities. Soviet Math. Doklady 15 (1974), 1705–1710.
[10] P. Boiri; F. Gastaldi and D. Kinderlehrer:
Existence, uniqueness and regularity results for the two-body contact problem. Appl. Math. Optim. 15 (1987), 251–277.
DOI 10.1007/BF01442654 |
MR 0879498
[12] Ph.G. Ciarlet:
The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978.
MR 0520174 |
Zbl 0383.65058
[13] G. Duvaut and J.L. Lions:
Les Inéquations en Mécanique et en Physique. Dunod, Paris, 1972.
MR 0464857
[14] G. Fichera: Boundary Value Problems of Elasticity with Unilateral Constraints. Springer-Verlag, Berlin 1972.
[15] R. Fletcher:
Practical Methods of Optimization. J. Wiley & Sons, Chichester-New York-Brisbane-Toronto-Singapure, 1990.
MR 1867781
[17] R. Glowinski; J.L. Lions and R. Trémolières:
Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam, 1981.
MR 0635927 |
Zbl 1169.65064
[18] O. Güler:
On the convergence of the proximal point algorithm for convex minimization. SIAM. J. Control and Optim. 29 (1991), 403–419.
DOI 10.1137/0329022 |
MR 1092735
[21] J. Haslinger and P.D. Panagiotopoulos:
The reciprocal variational approach to the Signorini problem with friction. Approximation Results. Proc. Roy. Soc. Edinburgh 98A (1984), 365–383.
MR 0768357
[22] I. Hlaváček; J. Haslinger; I. Nečas and J. Lovišek: Numerical Solution of Variational Inequalities. Springer-Verlag, Berlin-Heidelberg-New York, 1988.
[23] I. Hlaváček and I. Nečas:
On inequalities of Korn’s type, I. Boundary-value problems for elliptic systems of partial differential equations. Arch. Rat. Mech. Anal. 306 (1970), 305–311.
MR 0252844
[24] S. Ibaraki; M. Fukushima and T. Ibaraki:
Primal-dual proximal point algorithm for linearly constrained convex programming problems. Computational Optimization and Application 1 (1992), 207–226.
DOI 10.1007/BF00253807 |
MR 1226336 |
Zbl 1168.47046
[25] A. Kaplan:
Algorithm for convex programming using a smoothing for exact penalty functions. Sibirskij Mat. Journal 23 (1982), 53–64. (Russian)
MR 0668335
[27] A. Kaplan and R. Tichatschke:
Regularized penalty methods for semi-infinite programming problems. Proc. of the 3rd Intern. Conf. On Parametric Optimization., F. Deutsch. B. Brosowski and J. Guddat (eds.), Ser. Approximation and Optimization, vol. 3, P. Lang Verlag, Frankfurt/Main, 1993, 341–356.
MR 1241232
[29] V.I. Kustova: Solution of variational inequalities by mathematical programming methods. Ph. D. Thesis, Novosibirsk, 1987. (Russian)
[30] B. Lemaire:
The proximal algorithm. Internat. Series of Numerical Mathematics 87 (1989), 73–87.
MR 1001168 |
Zbl 0692.90079
[31] E.J. Luque:
Asymptotic convergence analysis of the proximal point algorithms. SIAM J. on Control and Optimization 22 (1984), 277–293.
DOI 10.1137/0322019 |
MR 0732428
[32] B. Martinet:
Régularisation d’inéquations variationelles par approximations successives. RIRO 4 (1970), 154–159.
MR 0298899
[34] K. Mouallif and P. Tossings:
Une méthode de pénalisation exponentielle associée à une régularisation proximale. Bull. Soc. Roy. Sc. de Liège 56 (1987), 181–192.
MR 0911355
[35] J. Nečas and I. Hlaváček:
Mathematical Theory of Elastic and Elasto-plastic Bodies, An Introduction. Elsevier, Amsterdam, 1981.
MR 0600655
[37] P.D. Panagiotopoulos:
A nonlinear programming approach to the unilateral contact- and friction-boundary value problem in the theory of elasticity. Ing. Archiv 44 (1975), 421–432.
DOI 10.1007/BF00534623 |
MR 0426584 |
Zbl 0332.73018
[38] P.D. Panagiotopoulos:
Inequality Problems in Mechanics and Applications. Birkhäuser-Verlag, Boston-Basel-Stuttgart, 1985.
MR 0896909 |
Zbl 0579.73014
[39] B.T. Polyak:
Introduction to Optimization. Optimization Software, Inc. Publ. Division, New York, 1987.
MR 1099605
[41] R.T. Rockafellar:
Augmented Lagrange multiplier functions and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1 (1976), 97–116.
DOI 10.1287/moor.1.2.97 |
MR 0418919
[44] J.E. Spingarn:
Application of the method of partial inverses to convex programming: Decomposition. Math. Programming 32 (1985), 199–223.
MR 0793690
[45] P. Tossings: Algorithme du point proximal perturbé et applications. Prépublication No. 90-015, Inst. de Mathématique, Univ. de Liège, 1990.